Page 343 - IJB-10-6
P. 343

International Journal of Bioprinting                            3D-printed PPDO/GO stents for CHD treatment




            37.  Kim TH, Lee JH, Ahn CB, Hong JH, Son KH, Lee JW.   composites for 3D printing bone scaffolds. Macromol Mater
               Development of a 3D-printed drug-eluting stent for treating   Eng. 2023;308(5):2200558.
               obstructive salivary gland disease.  ACS Biomater Sci Eng.      doi: 10.1002/mame.202200558
               2019;5(7):3572-3581.                            49.  Jana S. Endothelialization of cardiovascular devices.  Acta
               doi: 10.1021/acsbiomaterials.9b00636
                                                                  Biomater. 2019;99:53-71.
            38.  Lu J, Hu X, Yuan T, et al. 3D-printed poly (P-Dioxanone)      doi: 10.1016/j.actbio.2019.08.042
               stent for endovascular application: in vitro evaluations.   50.  Wang W, Lin S, Ye Z, et al. Electrospun egg white protein/
               Polymers. 2022;14(9):1755.                         polyvinyl alcohol/graphene oxide fibrous wound dressing:
               doi:  10.3390/polym14091755
                                                                  Fabrication, antibacterial, cytocompatibility and wound
            39.  Feng Q, Jiang W, Sun K, et al. Mechanical properties and in   healing assay.  Colloids  Surf  A:  Physicochem  Eng  Aspects.
               vivo performance of a novel sliding-lock bioabsorbable poly-  2023;658:130658.
               p-dioxanone stent. J Mater Sci: Mater Med. 2011;22(10):2319.      doi: 10.1016/j.colsurfa.2022.130658
               doi: 10.1007/s10856-011-4407-3
                                                               51.  Wang Y, Wu Y, Zhang Y, et al. Graphene oxide coated three-
            40.  Wu S, Qi Y, Shi W, Kuss M, Chen S, Duan B. Electrospun   dimensional printed biphasic calcium phosphate scaffold for
               conductive nanofiber yarns for accelerating mesenchymal   angiogenic and osteogenic synergy in repairing critical-size
               stem cells differentiation and maturation into Schwann cell-  bone defect. J Mater Sci Technol. 2023;145:25-39.
               like cells under a combination of electrical stimulation and      doi: 10.1016/j.jmst.2022.10.016
               chemical induction. Acta Biomater. 2022;139:91-104.   52.  Henriques PC, Pereira AT, Pires AL, Pereira AM, Magalhães
               doi: 10.1016/j.actbio.2020.11.042
                                                                  FD, Gonçalves IC. Graphene surfaces interaction with
            41.  Zhu L, Liang K, Ji Y. Prominent reinforcing effect of chitin   proteins, bacteria, mammalian cells, and blood constituents:
               nanocrystals on electrospun polydioxanone nanocomposite   the impact of graphene platelet oxidation and thickness.
               fiber mats. J Mech Behav Biomed Mater. 2015;44:35-42.   ACS Appl Mater Interf. 2020;12(18):21020-21035.
               doi: 10.1016/j.jmbbm.2014.12.019                   doi: 10.1021/acsami.9b21841
            42.  Shiroud Heidari B, Lopez EM, Chen P, et al. Silane-  53.  Zhao Z, Zong L, Liu C, et al. Dual strengthened corrosion
               modified hydroxyapatite nanoparticles incorporated into   control of biodegradable coating on magnesium alloy
               polydioxanone/poly(lactide-co-caprolactone)  creates  a  for vascular stent application.  Prog Organic Coat.
               novel toughened nanocomposite with improved material   2023;174:107297.
               properties and in vivo inflammatory responses. Mater Today      doi: 10.1016/j.porgcoat.2022.107297
               Bio. 2023;22:100778.                            54.  Chen E, Xiong Z, Cai X, et al. Bioresorbable PPDO sliding-
               doi: 10.1016/j.mtbio.2023.100778
                                                                  lock stents with optimized FDM parameters for congenital
            43.  Suk JW, Piner RD, An J, Ruoff RS. Mechanical properties   heart disease treatment.  J  Mech  Behav  Biomed  Mater.
               of monolayer graphene oxide.  ACS Nano.  2010;4(11):   2023;138:105609.
               6557-6564.                                         doi: 10.1016/j.jmbbm.2022.105609
               doi: 10.1021/nn101781v
                                                               55.  Davis CS, Hillgartner KE, Han SH, Seppala JE. Mechanical
            44.  Cao C, Daly M, Singh CV, Sun Y, Filleter T. High strength   strength of welding zones produced by polymer extrusion
               measurement of monolayer graphene oxide.  Carbon.   additive manufacturing. Addit Manuf. 2017;16:162-166.
               2015;81:497-504.                                   doi: 10.1016/j.addma.2017.06.006
               doi: 10.1016/j.carbon.2014.09.082
                                                               56.  Sofińska K, Barbasz J, Witko T, et al. Structural, topographical, and
            45.  Fu X, Lin J, Liang Z, et al. Graphene oxide as a promising   mechanical characteristics of purified polyhydroxyoctanoate
               nanofiller for polymer composite.  Surf Interfaces.   polymer. J Appl Polymer Sci. 2019;136(4):47192.
               2023;37:102747.                                    doi: 10.1002/app.47192
               doi: 10.1016/j.surfin.2023.102747
                                                               57.  Niu R, Gong J, Xu D, Tang T, Sun Z-Y. Influence of molecular
            46.  Shuai C, Peng B, Feng P, Yu L, Lai R, Min A. In situ synthesis   weight of polymer matrix on the structure and rheological
               of hydroxyapatite nanorods on graphene oxide nanosheets   properties  of  graphene  oxide/polydimethylsiloxane
               and their reinforcement in biopolymer scaffold. J Adv Res.   composites. Polymer. 2014;55(21):5445-5453.
               2022;35:13-24.                                     doi: 10.1016/j.polymer.2014.08.056
               doi: 10.1016/j.jare.2021.03.009
                                                               58.  Yang W, Zhong Y, He C, et al. Electrostatic self-
            47.  Raslan A, Saenz del Burgo L, Ciriza J, Pedraz JL. Graphene   assembly  of  pFe3O4  nanoparticles  on  graphene  oxide:  a
               oxide and reduced graphene oxide-based scaffolds in   co-dispersed nanosystem reinforces PLLA scaffolds. J Adv
               regenerative medicine. Int J Pharma. 2020;580:119226.   Res. 2020;24:191-203.
               doi: 10.1016/j.ijpharm.2020.119226                 doi: 10.1016/j.jare.2020.04.009
            48.  Sahafnejad-Mohammadi I, Rahmati S, Najmoddin N,   59.  Li Z, Deng L, Kinloch IA, Young RJ. Raman
               Bodaghi M.  Biomimetic  polycaprolactone-graphene oxide   spectroscopy of carbon materials and their composites:

            Volume 10 Issue 6 (2024)                       335                                doi: 10.36922/ijb.4530
   338   339   340   341   342   343   344   345   346   347   348