Page 343 - IJB-10-6
P. 343
International Journal of Bioprinting 3D-printed PPDO/GO stents for CHD treatment
37. Kim TH, Lee JH, Ahn CB, Hong JH, Son KH, Lee JW. composites for 3D printing bone scaffolds. Macromol Mater
Development of a 3D-printed drug-eluting stent for treating Eng. 2023;308(5):2200558.
obstructive salivary gland disease. ACS Biomater Sci Eng. doi: 10.1002/mame.202200558
2019;5(7):3572-3581. 49. Jana S. Endothelialization of cardiovascular devices. Acta
doi: 10.1021/acsbiomaterials.9b00636
Biomater. 2019;99:53-71.
38. Lu J, Hu X, Yuan T, et al. 3D-printed poly (P-Dioxanone) doi: 10.1016/j.actbio.2019.08.042
stent for endovascular application: in vitro evaluations. 50. Wang W, Lin S, Ye Z, et al. Electrospun egg white protein/
Polymers. 2022;14(9):1755. polyvinyl alcohol/graphene oxide fibrous wound dressing:
doi: 10.3390/polym14091755
Fabrication, antibacterial, cytocompatibility and wound
39. Feng Q, Jiang W, Sun K, et al. Mechanical properties and in healing assay. Colloids Surf A: Physicochem Eng Aspects.
vivo performance of a novel sliding-lock bioabsorbable poly- 2023;658:130658.
p-dioxanone stent. J Mater Sci: Mater Med. 2011;22(10):2319. doi: 10.1016/j.colsurfa.2022.130658
doi: 10.1007/s10856-011-4407-3
51. Wang Y, Wu Y, Zhang Y, et al. Graphene oxide coated three-
40. Wu S, Qi Y, Shi W, Kuss M, Chen S, Duan B. Electrospun dimensional printed biphasic calcium phosphate scaffold for
conductive nanofiber yarns for accelerating mesenchymal angiogenic and osteogenic synergy in repairing critical-size
stem cells differentiation and maturation into Schwann cell- bone defect. J Mater Sci Technol. 2023;145:25-39.
like cells under a combination of electrical stimulation and doi: 10.1016/j.jmst.2022.10.016
chemical induction. Acta Biomater. 2022;139:91-104. 52. Henriques PC, Pereira AT, Pires AL, Pereira AM, Magalhães
doi: 10.1016/j.actbio.2020.11.042
FD, Gonçalves IC. Graphene surfaces interaction with
41. Zhu L, Liang K, Ji Y. Prominent reinforcing effect of chitin proteins, bacteria, mammalian cells, and blood constituents:
nanocrystals on electrospun polydioxanone nanocomposite the impact of graphene platelet oxidation and thickness.
fiber mats. J Mech Behav Biomed Mater. 2015;44:35-42. ACS Appl Mater Interf. 2020;12(18):21020-21035.
doi: 10.1016/j.jmbbm.2014.12.019 doi: 10.1021/acsami.9b21841
42. Shiroud Heidari B, Lopez EM, Chen P, et al. Silane- 53. Zhao Z, Zong L, Liu C, et al. Dual strengthened corrosion
modified hydroxyapatite nanoparticles incorporated into control of biodegradable coating on magnesium alloy
polydioxanone/poly(lactide-co-caprolactone) creates a for vascular stent application. Prog Organic Coat.
novel toughened nanocomposite with improved material 2023;174:107297.
properties and in vivo inflammatory responses. Mater Today doi: 10.1016/j.porgcoat.2022.107297
Bio. 2023;22:100778. 54. Chen E, Xiong Z, Cai X, et al. Bioresorbable PPDO sliding-
doi: 10.1016/j.mtbio.2023.100778
lock stents with optimized FDM parameters for congenital
43. Suk JW, Piner RD, An J, Ruoff RS. Mechanical properties heart disease treatment. J Mech Behav Biomed Mater.
of monolayer graphene oxide. ACS Nano. 2010;4(11): 2023;138:105609.
6557-6564. doi: 10.1016/j.jmbbm.2022.105609
doi: 10.1021/nn101781v
55. Davis CS, Hillgartner KE, Han SH, Seppala JE. Mechanical
44. Cao C, Daly M, Singh CV, Sun Y, Filleter T. High strength strength of welding zones produced by polymer extrusion
measurement of monolayer graphene oxide. Carbon. additive manufacturing. Addit Manuf. 2017;16:162-166.
2015;81:497-504. doi: 10.1016/j.addma.2017.06.006
doi: 10.1016/j.carbon.2014.09.082
56. Sofińska K, Barbasz J, Witko T, et al. Structural, topographical, and
45. Fu X, Lin J, Liang Z, et al. Graphene oxide as a promising mechanical characteristics of purified polyhydroxyoctanoate
nanofiller for polymer composite. Surf Interfaces. polymer. J Appl Polymer Sci. 2019;136(4):47192.
2023;37:102747. doi: 10.1002/app.47192
doi: 10.1016/j.surfin.2023.102747
57. Niu R, Gong J, Xu D, Tang T, Sun Z-Y. Influence of molecular
46. Shuai C, Peng B, Feng P, Yu L, Lai R, Min A. In situ synthesis weight of polymer matrix on the structure and rheological
of hydroxyapatite nanorods on graphene oxide nanosheets properties of graphene oxide/polydimethylsiloxane
and their reinforcement in biopolymer scaffold. J Adv Res. composites. Polymer. 2014;55(21):5445-5453.
2022;35:13-24. doi: 10.1016/j.polymer.2014.08.056
doi: 10.1016/j.jare.2021.03.009
58. Yang W, Zhong Y, He C, et al. Electrostatic self-
47. Raslan A, Saenz del Burgo L, Ciriza J, Pedraz JL. Graphene assembly of pFe3O4 nanoparticles on graphene oxide: a
oxide and reduced graphene oxide-based scaffolds in co-dispersed nanosystem reinforces PLLA scaffolds. J Adv
regenerative medicine. Int J Pharma. 2020;580:119226. Res. 2020;24:191-203.
doi: 10.1016/j.ijpharm.2020.119226 doi: 10.1016/j.jare.2020.04.009
48. Sahafnejad-Mohammadi I, Rahmati S, Najmoddin N, 59. Li Z, Deng L, Kinloch IA, Young RJ. Raman
Bodaghi M. Biomimetic polycaprolactone-graphene oxide spectroscopy of carbon materials and their composites:
Volume 10 Issue 6 (2024) 335 doi: 10.36922/ijb.4530

