Page 344 - IJB-10-6
P. 344

International Journal of Bioprinting                           3D-printed PPDO/GO stents for CHD treatment.




               graphene, nanotubes and fibres.  Prog Mater Sci.  2023;   70.  Zhong J, Gao S, Xue G, Wang B. Study on enhancement
               135:101089.                                        mechanism of conductivity induced by graphene oxide
               doi: 10.1016/j.pmatsci.2023.101089                 for  polypyrrole  nanocomposites.  Macromolecules.
                                                                  2015;48(5):1592-1597.
            60.  Loskot J, Jezbera D, Bezrouk A, et al. Raman spectroscopy
               as a novel method for the characterization of polydioxanone      doi: 10.1021/ma502449k
               medical  stents  biodegradation.  Materials   (Basel).   71.  Huang X, Nakagawa S, Houjou H, Yoshie N. Insights into
               2021;14(18):5462.                                  the role of hydrogen bonds on the mechanical properties of
               doi:  10.3390/ma14185462                           polymer networks. Macromolecules. 2021;54(9):4070-4080.
                                                                  doi: 10.1021/acs.macromol.1c00120
            61.  Zainy M, Huang NM, Vijay Kumar S, Lim HN, Chia CH,
               Harrison  I.  Simple  and  scalable  preparation  of  reduced   72.  Chen Q, Mangadlao JD, Wallat J, De Leon A, Pokorski JK,
               graphene oxide–silver nanocomposites via rapid thermal   Advincula  RC.  3D  printing  biocompatible  polyurethane/
               treatment. Mater Lett. 2012;89:180-183.            poly(lactic  acid)/graphene  oxide  nanocomposites:
               doi: 10.1016/j.matlet.2012.08.101                  anisotropic properties.  ACS Appl Mater Interfaces.
                                                                  2017;9(4):4015-4023.
            62.  Zheng Y, Zhou J, Du F, et al. Formation of mesomorphic
               polymorph, thermal-induced phase transition, and      doi: 10.1021/acsami.6b11793
               crystalline structure-dependent degradable and mechanical   73.  Sun N, Di M, Liu Y. Lignin-containing polyurethane elastomers
               properties of poly(p-dioxanone).  Crystal Growth Design.   with  enhanced  mechanical  properties  via  hydrogen  bond
               2019;19(1):166-176.                                interactions. Int J Biol Macromol. 2021;184:1-8.
               doi: 10.1021/acs.cgd.8b01246                       doi: 10.1016/j.ijbiomac.2021.06.038
            63.  Ren P-G, Yan D-X, Ji X, Chen T, Li Z-M. Temperature   74.  Wang F, Yang Z, Li J, Zhang C, Sun P. Bioinspired
               dependence  of graphene  oxide  reduced by  hydrazine   polyurethane using multifunctional block modules with
               hydrate. Nanotechnology. 2011;22(5):055705.        synergistic dynamic bonds.  ACS Macro Lett.  2021;10(5):
               doi: 10.1088/0957-4484/22/5/055705                 510-517.
                                                                  doi: 10.1021/acsmacrolett.1c00054
            64.  Joy A, Unnikrishnan G, Megha M, et al. Hybrid gold/
               graphene oxide reinforced polycaprolactone nanocomposite   75.  Peng H, Du X, Cheng X, Wang H, Du Z. Room‐temperature
               for biomedical applications. Surf Interfaces. 2023;40:103000.   self-healable and stretchable waterborne polyurethane film
               doi: 10.1016/j.surfin.2023.103000                  fabricated via multiple hydrogen bonds. Prog Organic Coat.
                                                                  2021;151:106081.
            65.  Du Y, Xing L, Hou P, et al. Dual stimulus response mechanical
               properties tunable biodegradable and biocompatible PLCL/     doi: 10.1016/j.porgcoat.2020.106081
               PPDO based shape memory composites.  Colloids  Surf A:   76.  Abdullah SI, Ansari MNM. Mechanical properties
               Physicochem Eng Aspects. 2022;648:129244.          of graphene oxide (GO)/epoxy composites.  HBRC J.
               doi: 10.1016/j.colsurfa.2022.129244                2015;11(2):151-156.
                                                                  doi: 10.1016/j.hbrcj.2014.06.001
            66.  Qian Y, Li C, Qi Y, Zhong J. 3D printing of graphene
               oxide composites with well controlled alignment. Carbon.   77.  Forati T, Atai M, Rashidi AM, Imani M, Behnamghader
               2021;171:777-784.                                  A. Physical and mechanical properties of graphene oxide/
               doi: 10.1016/j.carbon.2020.08.077                  polyethersulfone nanocomposites.  Polym  Adv  Technol.
                                                                  2014;25(3):322-328.
            67.  Zheng Y, Ashizawa M, Zhang S, et al. Tuning the
               mechanical properties of a polymer semiconductor by      doi: 10.1002/pat.3243
               modulating hydrogen bonding interactions.  Chem Mater.   78.  Mianehrow H, Lo Re G, Carosio F, et al. Strong reinforcement
               2020;32(13):5700-5714.                             effects in 2D cellulose nanofibril-graphene oxide (CNF-GO)
               doi: 10.1021/acs.chemmater.0c01437                 nanocomposites due to GO-induced CNF ordering. J Mater
                                                                  Chem A. 2020;8(34):17608-17620.
            68.  Wang R, Xu H, Cheng S, et al. Ultrahigh-energy-density
               dielectric materials from ferroelectric polymer/glucose      doi: 10.1039/d0ta04406g
               all-organic composites with a cross-linking network of   79.  Wan CY,  Chen BQ.  Reinforcement and interphase of
               hydrogen bonds. Energy Storage Mater. 2022;49:339-347.   polymer/graphene oxide nanocomposites.  J Mater  Chem.
               doi: 10.1016/j.ensm.2022.04.028                    2012;22(8):3637-3646.
                                                                  doi: 10.1039/c2jm15062j
            69.  Cheng X, Kumar V, Yokozeki T, et al. Highly conductive
               graphene oxide/polyaniline hybrid polymer nanocomposites   80.  Wang H, Li Z, Zuo M, et al. Stretchable, freezing-tolerant
               with simultaneously improved mechanical properties.   conductive hydrogel for wearable electronics reinforced by
               Compos Part A: Appl Sci Manuf. 2016;82:100-107.    cellulose nanocrystals toward multiple hydrogen bonding.
               doi: 10.1016/j.compositesa.2015.12.006             Carbohydr Polym. 2022;280:119018.




            Volume 10 Issue 6 (2024)                       336                                doi: 10.36922/ijb.4530
   339   340   341   342   343   344   345   346   347   348   349