Page 344 - IJB-10-6
P. 344
International Journal of Bioprinting 3D-printed PPDO/GO stents for CHD treatment.
graphene, nanotubes and fibres. Prog Mater Sci. 2023; 70. Zhong J, Gao S, Xue G, Wang B. Study on enhancement
135:101089. mechanism of conductivity induced by graphene oxide
doi: 10.1016/j.pmatsci.2023.101089 for polypyrrole nanocomposites. Macromolecules.
2015;48(5):1592-1597.
60. Loskot J, Jezbera D, Bezrouk A, et al. Raman spectroscopy
as a novel method for the characterization of polydioxanone doi: 10.1021/ma502449k
medical stents biodegradation. Materials (Basel). 71. Huang X, Nakagawa S, Houjou H, Yoshie N. Insights into
2021;14(18):5462. the role of hydrogen bonds on the mechanical properties of
doi: 10.3390/ma14185462 polymer networks. Macromolecules. 2021;54(9):4070-4080.
doi: 10.1021/acs.macromol.1c00120
61. Zainy M, Huang NM, Vijay Kumar S, Lim HN, Chia CH,
Harrison I. Simple and scalable preparation of reduced 72. Chen Q, Mangadlao JD, Wallat J, De Leon A, Pokorski JK,
graphene oxide–silver nanocomposites via rapid thermal Advincula RC. 3D printing biocompatible polyurethane/
treatment. Mater Lett. 2012;89:180-183. poly(lactic acid)/graphene oxide nanocomposites:
doi: 10.1016/j.matlet.2012.08.101 anisotropic properties. ACS Appl Mater Interfaces.
2017;9(4):4015-4023.
62. Zheng Y, Zhou J, Du F, et al. Formation of mesomorphic
polymorph, thermal-induced phase transition, and doi: 10.1021/acsami.6b11793
crystalline structure-dependent degradable and mechanical 73. Sun N, Di M, Liu Y. Lignin-containing polyurethane elastomers
properties of poly(p-dioxanone). Crystal Growth Design. with enhanced mechanical properties via hydrogen bond
2019;19(1):166-176. interactions. Int J Biol Macromol. 2021;184:1-8.
doi: 10.1021/acs.cgd.8b01246 doi: 10.1016/j.ijbiomac.2021.06.038
63. Ren P-G, Yan D-X, Ji X, Chen T, Li Z-M. Temperature 74. Wang F, Yang Z, Li J, Zhang C, Sun P. Bioinspired
dependence of graphene oxide reduced by hydrazine polyurethane using multifunctional block modules with
hydrate. Nanotechnology. 2011;22(5):055705. synergistic dynamic bonds. ACS Macro Lett. 2021;10(5):
doi: 10.1088/0957-4484/22/5/055705 510-517.
doi: 10.1021/acsmacrolett.1c00054
64. Joy A, Unnikrishnan G, Megha M, et al. Hybrid gold/
graphene oxide reinforced polycaprolactone nanocomposite 75. Peng H, Du X, Cheng X, Wang H, Du Z. Room‐temperature
for biomedical applications. Surf Interfaces. 2023;40:103000. self-healable and stretchable waterborne polyurethane film
doi: 10.1016/j.surfin.2023.103000 fabricated via multiple hydrogen bonds. Prog Organic Coat.
2021;151:106081.
65. Du Y, Xing L, Hou P, et al. Dual stimulus response mechanical
properties tunable biodegradable and biocompatible PLCL/ doi: 10.1016/j.porgcoat.2020.106081
PPDO based shape memory composites. Colloids Surf A: 76. Abdullah SI, Ansari MNM. Mechanical properties
Physicochem Eng Aspects. 2022;648:129244. of graphene oxide (GO)/epoxy composites. HBRC J.
doi: 10.1016/j.colsurfa.2022.129244 2015;11(2):151-156.
doi: 10.1016/j.hbrcj.2014.06.001
66. Qian Y, Li C, Qi Y, Zhong J. 3D printing of graphene
oxide composites with well controlled alignment. Carbon. 77. Forati T, Atai M, Rashidi AM, Imani M, Behnamghader
2021;171:777-784. A. Physical and mechanical properties of graphene oxide/
doi: 10.1016/j.carbon.2020.08.077 polyethersulfone nanocomposites. Polym Adv Technol.
2014;25(3):322-328.
67. Zheng Y, Ashizawa M, Zhang S, et al. Tuning the
mechanical properties of a polymer semiconductor by doi: 10.1002/pat.3243
modulating hydrogen bonding interactions. Chem Mater. 78. Mianehrow H, Lo Re G, Carosio F, et al. Strong reinforcement
2020;32(13):5700-5714. effects in 2D cellulose nanofibril-graphene oxide (CNF-GO)
doi: 10.1021/acs.chemmater.0c01437 nanocomposites due to GO-induced CNF ordering. J Mater
Chem A. 2020;8(34):17608-17620.
68. Wang R, Xu H, Cheng S, et al. Ultrahigh-energy-density
dielectric materials from ferroelectric polymer/glucose doi: 10.1039/d0ta04406g
all-organic composites with a cross-linking network of 79. Wan CY, Chen BQ. Reinforcement and interphase of
hydrogen bonds. Energy Storage Mater. 2022;49:339-347. polymer/graphene oxide nanocomposites. J Mater Chem.
doi: 10.1016/j.ensm.2022.04.028 2012;22(8):3637-3646.
doi: 10.1039/c2jm15062j
69. Cheng X, Kumar V, Yokozeki T, et al. Highly conductive
graphene oxide/polyaniline hybrid polymer nanocomposites 80. Wang H, Li Z, Zuo M, et al. Stretchable, freezing-tolerant
with simultaneously improved mechanical properties. conductive hydrogel for wearable electronics reinforced by
Compos Part A: Appl Sci Manuf. 2016;82:100-107. cellulose nanocrystals toward multiple hydrogen bonding.
doi: 10.1016/j.compositesa.2015.12.006 Carbohydr Polym. 2022;280:119018.
Volume 10 Issue 6 (2024) 336 doi: 10.36922/ijb.4530

