Page 550 - IJB-10-6
P. 550
International Journal of Bioprinting Design and property of PLPG/PDLA scaffold
A. euchroma extract for skin tissue engineering application. 17. Zhang Y, Wang Y, Wang B, et al. Exclusive formation of
Carbohyd Polym. 2022;278:118926. poly(lactide) stereocomplexes with enhanced melt stability
doi: 10.1016/j.carbpol.2021.118926 via regenerated cellulose assisted Pickering emulsion
approach. Compos Commun. 2022;32:101138.
7. Kuang T, Chen F, Chang L, et al. Facile preparation of open-
cellular porous poly (l-lactic acid) scaffold by supercritical doi: 10.1016/j.coco.2022.101138
carbon dioxide foaming for potential tissue engineering 18. Zhou W, Chen X, Yang K, et al. Achieving morphological
applications. Chem Eng J. 2017;307:1017-1025. evolution and interfacial enhancement in fully degradable
doi: 10.1016/j.cej.2016.09.023 and supertough polylactide/polyurethane elastomer
blends by interfacial stereocomplexation. Appl Surf Sci.
8. Bertsch C, Maréchal H, Gribova V, et al. Biomimetic
bilayered scaffolds for tissue engineering: from current 2022;572:151393.
design strategies to medical applications. Adv Healthc Mater. doi: 10.1016/j.apsusc.2021.151393
2023;12:2203115. 19. Zhang H, Bai H, Deng S, et al. Achieving all-polylactide
doi: 10.1002/adhm.202203115 fibers with significantly enhanced heat resistance and
tensile strength via in situ formation of nanofibrilized
9. Nigmatullin R, Taylor CS, Basnett P, et al. Medium chain
length polyhydroxyalkanoates as potential matrix materials stereocomplex polylactide. Polymer. 2019;166:13-20.
for peripheral nerve regeneration. Regen Biomater. doi: 10.1016/j.polymer.2019.01.040
2023;10:rbad063. 20. Jalali A, Romero-Diez S, Nofar M, et al. Entirely environment-
doi: 10.1093/rb/rbad063 friendly polylactide composites with outstanding
heat resistance and superior mechanical performance
10. Duan R, Wang Y, Su D, et al. The effect of blending poly(l-
lactic acid) on in vivo performance of 3D-printed poly(l- fabricated by spunbond technology: exploring the role of
lactide-co-caprolactone)/PLLA scaffolds. Biomater Adv. nanofibrillated stereocomplex polylactide crystals. Int J Biol
2022;138:212948. Macromol. 2021;193:2210-2220.
doi: 10.1016/j.bioadv.2022.212948 doi: 10.1016/j.ijbiomac.2021.11.052
21. Li J, Ye W, Fan Z, et al. A novel stereocomplex poly (lactic
11. Zheng S, Li W, Chen Y, et al. Synergistic effect of stereo-
complexation and interfacial compatibility in ammonium acid) with shish-kebab crystals and bionic surface structures
polyphosphate grafted polylactic acid fibers for as bioimplant materials for tissue engineering applications.
simultaneously improved toughness and flame retardancy. ACS Appl Mater Interfaces. 2021;13:5469-5477.
Int J Biol Macromol. 2024;261(Pt 2):129943. doi: 10.1021/acsami.0c17465
doi: 10.1016/j.ijbiomac.2024.129943 22. Feng L, Bian X, Li G, et al. Thermal properties and structural
evolution of poly(l-lactide)/poly(d-lactide) blends.
12. Yang Y, Zan J, Yang W, et al. Metal organic frameworks as
a compatible reinforcement in a biopolymer bone scaffold. Macromolecules. 2021;54:10163-10176.
Mater Chem Front. 2020;4:973-984. doi: 10.1021/acs.macromol.1c01866
doi: 10.1039/C9QM00772E 23. Körber S, Moser K, Diemert J. Development of high
temperature resistant stereocomplex PLA for injection
13. Fan T, Qin J, Li J, et al. Fabrication and evaluation of 3D
printed poly(l-lactide) copolymer scaffolds for bone tissue moulding. Polymers. 2022;14:384.
engineering. Int J Biol Macromol. 2023;245:125525. doi: 10.3390/polym14030384
doi: 10.1016/j.ijbiomac.2023.125525 24. Yan Q, Dong H, Su J, et al. A review of 3D printing technology
for medical applications. Engineering. 2018;4:729-742.
14. Liu H, Bai D, Bai H, et al. Constructing stereocomplex
structures at the interface for remarkably accelerating doi: 10.1016/j.eng.2018.07.021
matrix crystallization and enhancing the mechanical 25. Liu X, Zhang J, Cheng X, et al. Integrated printed BDNF-
properties of poly(L-lactide)/multi-walled carbon nanotube stimulated HUCMSCs-derived exosomes/collagen/chitosan
nanocomposites. J Mater Chem A. 2015;3:13835-13847. biological scaffolds with 3D printing technology promoted
doi: 10.1039/c5ta02017d the remodelling of neural networks after traumatic brain
injury. Regen Biomater. 2023;10:rbac085.
15. Cheng Y, Jiao Z, Li M, et al. A new class of nucleating agents
for poly(L-lactic acid): environmentally-friendly metal salts doi: 10.1093/rb/rbac085
with biomass-derived ligands and advanced nucleation 26. Jiang S, Wang M, He J. A review of biomimetic scaffolds for
ability. Int J Biol Macromol. 2023;225:1599-1606. bone regeneration: toward a cell‐free strategy. Bioeng Transl
doi: 10.1016/j.ijbiomac.2022.11.216 Med. 2021;6:e10206.
doi: 10.1002/btm2.10206
16. Yu B, Meng L, Fu S, et al. Morphology and internal structure
control over PLA microspheres by compounding PLLA and 27. Jia W, Li H, Wang Z, et al. 3D composite lithium metal with
PDLA and effects on drug release behavior. Colloid Surface multilevel micro-nano structure combined with surface
B. 2018;172:105-112. modification for stable lithium metal anodes. Appl Surf Sci.
doi: 10.1016/j.colsurfb.2018.08.037 2021;570:151159.
Volume 10 Issue 6 (2024) 542 doi: 10.36922/ijb.4645

