Page 550 - IJB-10-6
P. 550

International Journal of Bioprinting                              Design and property of PLPG/PDLA scaffold




               A. euchroma extract for skin tissue engineering application.   17.  Zhang Y, Wang Y, Wang B, et al. Exclusive formation of
               Carbohyd Polym. 2022;278:118926.                   poly(lactide) stereocomplexes with enhanced melt stability
               doi: 10.1016/j.carbpol.2021.118926                 via regenerated cellulose assisted Pickering emulsion
                                                                  approach. Compos Commun. 2022;32:101138.
            7.   Kuang T, Chen F, Chang L, et al. Facile preparation of open-
               cellular porous poly (l-lactic acid) scaffold by supercritical      doi: 10.1016/j.coco.2022.101138
               carbon dioxide foaming for potential tissue engineering   18.  Zhou W, Chen X, Yang K, et al. Achieving morphological
               applications. Chem Eng J. 2017;307:1017-1025.      evolution and interfacial enhancement in fully degradable
               doi: 10.1016/j.cej.2016.09.023                     and  supertough  polylactide/polyurethane  elastomer
                                                                  blends by interfacial stereocomplexation.  Appl Surf Sci.
            8.   Bertsch C, Maréchal H, Gribova V, et al. Biomimetic
               bilayered scaffolds  for  tissue  engineering:  from  current   2022;572:151393.
               design strategies to medical applications. Adv Healthc Mater.      doi: 10.1016/j.apsusc.2021.151393
               2023;12:2203115.                                19.  Zhang  H,  Bai  H,  Deng  S,  et  al.  Achieving  all-polylactide
               doi: 10.1002/adhm.202203115                        fibers with significantly  enhanced heat  resistance  and
                                                                  tensile strength via  in  situ formation of nanofibrilized
            9.   Nigmatullin R, Taylor CS, Basnett P, et al. Medium chain
               length polyhydroxyalkanoates as potential matrix materials   stereocomplex polylactide. Polymer. 2019;166:13-20.
               for peripheral nerve regeneration.  Regen Biomater.      doi: 10.1016/j.polymer.2019.01.040
               2023;10:rbad063.                                20.  Jalali A, Romero-Diez S, Nofar M, et al. Entirely environment-
               doi: 10.1093/rb/rbad063                            friendly  polylactide  composites  with  outstanding
                                                                  heat resistance and superior mechanical performance
            10.  Duan R, Wang Y, Su D, et al. The effect of blending poly(l-
               lactic acid) on  in vivo performance of 3D-printed poly(l-  fabricated by spunbond technology: exploring the role of
               lactide-co-caprolactone)/PLLA scaffolds.  Biomater Adv.   nanofibrillated stereocomplex polylactide crystals. Int J Biol
               2022;138:212948.                                   Macromol. 2021;193:2210-2220.
               doi: 10.1016/j.bioadv.2022.212948                  doi: 10.1016/j.ijbiomac.2021.11.052
                                                               21.  Li J, Ye W, Fan Z, et al. A novel stereocomplex poly (lactic
            11.  Zheng S, Li W, Chen Y, et al. Synergistic effect of stereo-
               complexation and interfacial compatibility in ammonium   acid) with shish-kebab crystals and bionic surface structures
               polyphosphate  grafted  polylactic  acid  fibers  for  as bioimplant materials for tissue engineering applications.
               simultaneously improved toughness and flame retardancy.   ACS Appl Mater Interfaces. 2021;13:5469-5477.
               Int J Biol Macromol. 2024;261(Pt 2):129943.        doi: 10.1021/acsami.0c17465
               doi: 10.1016/j.ijbiomac.2024.129943             22.  Feng L, Bian X, Li G, et al. Thermal properties and structural
                                                                  evolution  of  poly(l-lactide)/poly(d-lactide)  blends.
            12.  Yang Y, Zan J, Yang W, et al. Metal organic frameworks as
               a compatible reinforcement in a biopolymer bone scaffold.   Macromolecules. 2021;54:10163-10176.
               Mater Chem Front. 2020;4:973-984.                  doi: 10.1021/acs.macromol.1c01866
               doi: 10.1039/C9QM00772E                         23.  Körber S, Moser K, Diemert J. Development of high
                                                                  temperature resistant stereocomplex PLA for injection
            13.  Fan T, Qin J, Li J, et al. Fabrication and evaluation of 3D
               printed poly(l-lactide) copolymer scaffolds for bone tissue   moulding. Polymers. 2022;14:384.
               engineering. Int J Biol Macromol. 2023;245:125525.     doi: 10.3390/polym14030384
               doi: 10.1016/j.ijbiomac.2023.125525             24.  Yan Q, Dong H, Su J, et al. A review of 3D printing technology
                                                                  for medical applications. Engineering. 2018;4:729-742.
            14.  Liu H, Bai D, Bai H, et al. Constructing stereocomplex
               structures  at the interface  for remarkably accelerating      doi: 10.1016/j.eng.2018.07.021
               matrix crystallization and enhancing the mechanical   25.  Liu X, Zhang J, Cheng X, et al. Integrated printed BDNF-
               properties of poly(L-lactide)/multi-walled carbon nanotube   stimulated HUCMSCs-derived exosomes/collagen/chitosan
               nanocomposites. J Mater Chem A. 2015;3:13835-13847.  biological scaffolds with 3D printing technology promoted
               doi: 10.1039/c5ta02017d                            the  remodelling  of  neural  networks  after  traumatic  brain
                                                                  injury. Regen Biomater. 2023;10:rbac085.
            15.  Cheng Y, Jiao Z, Li M, et al. A new class of nucleating agents
               for poly(L-lactic acid): environmentally-friendly metal salts      doi: 10.1093/rb/rbac085
               with biomass-derived ligands and advanced nucleation   26.  Jiang S, Wang M, He J. A review of biomimetic scaffolds for
               ability. Int J Biol Macromol. 2023;225:1599-1606.  bone regeneration: toward a cell‐free strategy. Bioeng Transl
               doi: 10.1016/j.ijbiomac.2022.11.216                Med. 2021;6:e10206.
                                                                  doi: 10.1002/btm2.10206
            16.  Yu B, Meng L, Fu S, et al. Morphology and internal structure
               control over PLA microspheres by compounding PLLA and   27.  Jia W, Li H, Wang Z, et al. 3D composite lithium metal with
               PDLA and effects on drug release behavior. Colloid Surface   multilevel micro-nano structure combined with surface
               B. 2018;172:105-112.                               modification for stable lithium metal anodes. Appl Surf Sci.
               doi: 10.1016/j.colsurfb.2018.08.037                2021;570:151159.

            Volume 10 Issue 6 (2024)                       542                                doi: 10.36922/ijb.4645
   545   546   547   548   549   550   551   552   553   554   555