Page 103 - IJB-7-1
P. 103
Cunico
Mater Sci Eng, 94:65–75. Ceramics, Some Clinical and Biological Aspects. Future
https://doi.org/10.5604/01.3001.0012.8660 Dent J, 2:55–64.
24. Thompson Y, Gonzalez-Gutierrez J, Kukla C, et al., 2019, https://doi.org/10.1016/j.fdj.2016.10.002
Fused Filament Fabrication, Debinding and Sintering as a 32. Bicalho LA, Baptista CA, Barboza MJ, et al., 2011, ZrO -
2
Low Cost Additive Manufacturing Method of 316L Stainless Bioglass Dental Ceramics: Processing, Structural and
Steel. Addit Manuf, 30:100861. Mechanics Characterization. In: Advances in Ceramics
https://doi.org/10.1016/j.addma.2019.100861 Electric and Magnetic Ceramics, Bioceramics, Ceramics and
25. Saude N, Ibrahim M, Ibrahim MH, 2014, Mechanical Environment. InTech, Rijeka, Croatia.
Properties of Highly Filled Iron-ABS Composites in Injection https://doi.org/10.5772/22334
Molding for FDM Wire Filament. Mater Sci Forum, 773– 33. Christel P, Meunier A, Heller M, et al., 1989, Mechanical
774:448–53. Properties and Short-term In Vivo Evaluation of Yttrium-
https://doi.org/10.4028/www.scientific.net/msf.773-774.448 oxide-partially-stabilized Zirconia. J Biomed Mater Res,
26. Abdullah AM, Rahim TN, Mohamad D, et al., 2017, 23:45–61.
Mechanical and Physical Properties of Highly ZrO /β- https://doi.org/10.1002/jbm.820230105
2
TCP Filled Polyamide 12 Prepared via Fused Deposition 34. Guazzato M, Albakry M, Ringer SP, et al., 2004, Strength,
Modelling (FDM) 3D Printer for Potential Craniofacial Fracture Toughness and Microstructure of a Selection of
Reconstruction Application. Mater Lett, 189:307–9. All-ceramic Materials. Part I. Pressable and Alumina Glass-
https://doi.org/10.1016/j.matlet.2016.11.052 infiltrated Ceramics. Dent Mater, 20:441–8.
27. Denry I, Kelly JT, 2008, State of the Art of Zirconia for https://doi.org/10.1016/j.dental.2003.05.003
Dental Applications. Dent Mater, 24:299–307. 35. Guazzato M, Albakry M, Ringer SP, et al., 2004, Strength,
https://doi.org/10.1016/j.dental.2007.05.007 Fracture Toughness and Microstructure of a Selection of All-
28. Coldea A, Swain MV, Thiel N, 2013, Mechanical Properties ceramic Materials. Part II. Zirconia-Based Dental Ceramics.
of Polymer-infiltrated-ceramic-network Materials. Dent Dent Mater, 20:449–56.
Mater, 29:419–26. https://doi.org/10.1016/j.dental.2003.05.002
https://doi.org/10.1016/j.dental.2013.01.002 36. Ilie N, Hickel R, 2009, Investigations on Mechanical
29. Junior SA, Zanchi CH, de Carvalho RV, et al., 2007, Flexural Behaviour of Dental Composites. Clin Oral Investig, 13:427.
Strength and Modulus of Elasticity of Different Types of https://doi.org/10.1007/s00784-009-0258-4
Resin-based Composites. Braz Oral Res, 21:16–21. 37. Galante R, Figueiredo-Pina CG, Serro AP, 2019, Additive
https://doi.org/10.1590/s1806-83242007000100003 Manufacturing of Ceramics for Dental Applications: A
30. Silva LH, de Lima E, de Paula Miranda RB, et al., 2017, Review. Dent Mater, 35:825–46.
Dental Ceramics: A Review of New Materials and Processing https://doi.org/10.1016/j.dental.2019.02.026
Methods. Braz Oral Res, 31:e58. 38. Virdi M, 2015, Emerging Trends in Oral Health Sciences and
31. Abd El-Ghany OS, Sherief AH, 2016, Zirconia Based Dentistry. IntechOpen, London, pp. 854.
International Journal of Bioprinting (2021)–Volume 7, Issue 1 99

