Page 114 - IJB-7-1
P. 114

HA15-loaded Bone Tissue Scaffold
           7.   Burg KJ, Porter S, Kellam JF, 2000, Biomaterial Developments   19.  Nandi SK, Fielding G, Banerjee D, et al., 2018, 3D-Printed
               for Bone Tissue Engineering. Biomaterials, 21:2347–59.  β-TCP  Bone  Tissue  Engineering  Scaffolds:  Effects  of
               https://doi.org/10.1016/S0142-9612(00)00102-2       Chemistry on In Vivo Biological Properties in a Rabbit Tibia
           8.   Khojasteh A, Fahimipour F, Eslaminejad MB, et al., 2016,   Model. J Mater Res, 33:1939–47.
               Development of PLGA-coated β-TCP Scaffolds Containing      https://doi.org/10.1557/jmr.2018.233
               VEGF  for  Bone  Tissue  Engineering.  Mater Sci Eng C,   20.  Liu Q, Cen L, Yin S, et al., 2008, A Comparative Study of
               69:780–8.                                           Proliferation  and Osteogenic Differentiation  of  Adipose-
               https://doi.org/10.1016/j.msec.2016.07.011          derived  Stem  Cells  on  Akermanite  and  β-TCP  Ceramics.
           9.   Yang S, Leong KF, Du Z, et al., 2001, The Design of Scaffolds   Biomaterials, 29:4792–99.
               for  Use  in  Tissue  Engineering.  Part  I.  Traditional  Factors.      https://doi.org/10.1016/j.biomaterials.2008.08.039
               Tissue Eng, 7:679–89.                           21.  Gentile P, Chiono V, Carmagnola I, et al., 2014, An Overview
               https://doi.org/10.1089/107632701753337645          of Poly(lactic-co-glycolic) Acid (PLGA)-Based Biomaterials
           10.  Ng WL, Chua CK, Shen YF, 2019, Print me an Organ! Why   for Bone Tissue Engineering. Int J Mol Sci, 15:3640–59.
               we are not there YET. Prog Polym Sci, 97:101145.     https://doi.org/10.3390/ijms15033640
               https://doi.org/10.1016/j.progpolymsci.2019.101145  22.  Yadav  RK,  Chae  SW,  Kim  HR,  et al.,  2014,  Endoplasmic
           11.  Zhou  H,  Lawrence  JG,  Bhaduri  SB,  2012,  Fabrication   Reticulum Stress and Cancer. J Cancer Prev, 19 (2014) 75–88.
               Aspects of PLA-CaP/PLGA-CaP Composites for Orthopedic      https://doi.org/10.15430/JCP.2014.19.2.75.
               Applications: A Review. Acta Biomater, 8:1999–2016.  23.  Urra H, Dufey E, Avril T, et al., 2016, Endoplasmic Reticulum
               https://doi.org/10.1016/j.actbio.2012.01.031        Stress and the Hallmarks of Cancer. Trends Cancer, 2:252–62.
           12.  Hollister SJ, 2009, Scaffold Design and Manufacturing: From      https://doi.org/10.1016/j.trecan.2016.03.007
               Concept to Clinic. Adv Mater, 21:3330–42.       24.  Díaz-Villanueva J, Díaz-Molina R, García-González V, 2015,
               https://doi.org/10.1002/adma.200802977              Protein Folding and Mechanisms of Proteostasis. Int J Mol
           13.  Badekila  AK,  Kini  S,  Jaiswal  AK,  2020,  Fabrication   Sci, 16:17193–230.
               Techniques of Biomimetic  Scaffolds in  Three-dimensional      https://doi.org/10.3390/ijms160817193
               Cell Culture: A Review. J Cell Physiol, 2020:29935.  25.  Sano  R,  Reed  JC,  2013,  ER  Stress-induced  Cell  Death
               https://doi.org/10.1002/jcp.29935                   Mechanisms.  Biochim Biophys  Acta Mol Cell Res,
           14.  Logeart-Avramoglou  D,  Anagnostou  F,  Bizios  R,  et  al.,   1833:3460–70.
               2005,  Engineering  Bone:  Challenges  and  for  Bone  Tissue      https://doi.org/10.1016/j.bbamcr.2013.06.028
               Engineering and Regenerative Medicine: A Review. J Cell   26.  Attarilar S, Yang J, Ebrahimi M, et al., 2020, The Toxicity
               Mol Med, 9:72–84.                                   Phenomenon and the Related Occurrence in Metal and Metal
               https://doi.org/10.1111/j.1582-4934.2005.tb00338.x  Oxide Nanoparticles: A Brief Review From the Biomedical
           15.  Pina  S,  Oliveira  JM,  Reis  RL,  2015,  Natural-Based   Perspective. Front Bioeng Biotechnol, 8:822.
               Nanocomposites. Adv Mater, 27:1143–69.              https://doi.org/10.3389/fbioe.2020.00822
               https://doi.org/10.1002/adma.201403354          27.  Cerezo  M,  Lehraiki  A,  Millet  A,  et al.,  2016,  Compounds
           16.  Asti A, Gioglio L, 2014, Natural and Synthetic Biodegradable   Triggering  ER  Stress  Exert  Anti-Melanoma  Effects  and
               Polymers: Different Scaffolds for Cell Expansion and Tissue   Overcome BRAF Inhibitor Resistance. Cancer Cell, 29:805–19.
               Formation. Int J Artif Organs, 37:187–205.          https://doi.org/10.1016/j.ccell.2016.04.013
               https://doi.org/10.5301/ijao.5000307            28.  Xiao G, Jiang D, Ge C, et al., 2005, Cooperative Interactions
           17.  Shrivats  AR,  McDermott  MC,  Hollinger  JO,  2014,  Bone   between Activating Transcription Factor 4 and Runx2/Cbfa1
               Tissue Engineering: State of the Union. Drug Discov Today,   Stimulate Osteoblast-specific Osteocalcin Gene Expression.
               19:781–86.                                          J Biol Chem, 280:30689–96.
               https://doi.org/10.1016/j.drudis.2014.04.010        https://doi.org/10.1074/jbc.M500750200
           18.  Winkler  T,  Sass  FA,  Duda  GN,  et  al.,  2018,  A  Review   29.  Wang W, Chen J, Hui Y, et al., 2018, Down-Regulation of
               of Biomaterials  in Bone Defect Healing, Remaining   miR-193a-3p  Promotes  Osteoblast  Differentiation  through
               Shortcomings  and  Future  Opportunities  for  Bone  Tissue   up-regulation  of  LGR4/ATF4  Signaling.  Biochem Biophys
               Engineering. Bone Joint Res, 7:232–43.              Res Commun, 503:2186–93.
               https://doi.org/10.1302/2046-3758.73.BJR-2017-0270.R1     https://doi.org/10.1016/j.bbrc.2018.08.011

           110                         International Journal of Bioprinting (2021)–Volume 7, Issue 1
   109   110   111   112   113   114   115   116   117   118   119