Page 114 - IJB-7-1
P. 114
HA15-loaded Bone Tissue Scaffold
7. Burg KJ, Porter S, Kellam JF, 2000, Biomaterial Developments 19. Nandi SK, Fielding G, Banerjee D, et al., 2018, 3D-Printed
for Bone Tissue Engineering. Biomaterials, 21:2347–59. β-TCP Bone Tissue Engineering Scaffolds: Effects of
https://doi.org/10.1016/S0142-9612(00)00102-2 Chemistry on In Vivo Biological Properties in a Rabbit Tibia
8. Khojasteh A, Fahimipour F, Eslaminejad MB, et al., 2016, Model. J Mater Res, 33:1939–47.
Development of PLGA-coated β-TCP Scaffolds Containing https://doi.org/10.1557/jmr.2018.233
VEGF for Bone Tissue Engineering. Mater Sci Eng C, 20. Liu Q, Cen L, Yin S, et al., 2008, A Comparative Study of
69:780–8. Proliferation and Osteogenic Differentiation of Adipose-
https://doi.org/10.1016/j.msec.2016.07.011 derived Stem Cells on Akermanite and β-TCP Ceramics.
9. Yang S, Leong KF, Du Z, et al., 2001, The Design of Scaffolds Biomaterials, 29:4792–99.
for Use in Tissue Engineering. Part I. Traditional Factors. https://doi.org/10.1016/j.biomaterials.2008.08.039
Tissue Eng, 7:679–89. 21. Gentile P, Chiono V, Carmagnola I, et al., 2014, An Overview
https://doi.org/10.1089/107632701753337645 of Poly(lactic-co-glycolic) Acid (PLGA)-Based Biomaterials
10. Ng WL, Chua CK, Shen YF, 2019, Print me an Organ! Why for Bone Tissue Engineering. Int J Mol Sci, 15:3640–59.
we are not there YET. Prog Polym Sci, 97:101145. https://doi.org/10.3390/ijms15033640
https://doi.org/10.1016/j.progpolymsci.2019.101145 22. Yadav RK, Chae SW, Kim HR, et al., 2014, Endoplasmic
11. Zhou H, Lawrence JG, Bhaduri SB, 2012, Fabrication Reticulum Stress and Cancer. J Cancer Prev, 19 (2014) 75–88.
Aspects of PLA-CaP/PLGA-CaP Composites for Orthopedic https://doi.org/10.15430/JCP.2014.19.2.75.
Applications: A Review. Acta Biomater, 8:1999–2016. 23. Urra H, Dufey E, Avril T, et al., 2016, Endoplasmic Reticulum
https://doi.org/10.1016/j.actbio.2012.01.031 Stress and the Hallmarks of Cancer. Trends Cancer, 2:252–62.
12. Hollister SJ, 2009, Scaffold Design and Manufacturing: From https://doi.org/10.1016/j.trecan.2016.03.007
Concept to Clinic. Adv Mater, 21:3330–42. 24. Díaz-Villanueva J, Díaz-Molina R, García-González V, 2015,
https://doi.org/10.1002/adma.200802977 Protein Folding and Mechanisms of Proteostasis. Int J Mol
13. Badekila AK, Kini S, Jaiswal AK, 2020, Fabrication Sci, 16:17193–230.
Techniques of Biomimetic Scaffolds in Three-dimensional https://doi.org/10.3390/ijms160817193
Cell Culture: A Review. J Cell Physiol, 2020:29935. 25. Sano R, Reed JC, 2013, ER Stress-induced Cell Death
https://doi.org/10.1002/jcp.29935 Mechanisms. Biochim Biophys Acta Mol Cell Res,
14. Logeart-Avramoglou D, Anagnostou F, Bizios R, et al., 1833:3460–70.
2005, Engineering Bone: Challenges and for Bone Tissue https://doi.org/10.1016/j.bbamcr.2013.06.028
Engineering and Regenerative Medicine: A Review. J Cell 26. Attarilar S, Yang J, Ebrahimi M, et al., 2020, The Toxicity
Mol Med, 9:72–84. Phenomenon and the Related Occurrence in Metal and Metal
https://doi.org/10.1111/j.1582-4934.2005.tb00338.x Oxide Nanoparticles: A Brief Review From the Biomedical
15. Pina S, Oliveira JM, Reis RL, 2015, Natural-Based Perspective. Front Bioeng Biotechnol, 8:822.
Nanocomposites. Adv Mater, 27:1143–69. https://doi.org/10.3389/fbioe.2020.00822
https://doi.org/10.1002/adma.201403354 27. Cerezo M, Lehraiki A, Millet A, et al., 2016, Compounds
16. Asti A, Gioglio L, 2014, Natural and Synthetic Biodegradable Triggering ER Stress Exert Anti-Melanoma Effects and
Polymers: Different Scaffolds for Cell Expansion and Tissue Overcome BRAF Inhibitor Resistance. Cancer Cell, 29:805–19.
Formation. Int J Artif Organs, 37:187–205. https://doi.org/10.1016/j.ccell.2016.04.013
https://doi.org/10.5301/ijao.5000307 28. Xiao G, Jiang D, Ge C, et al., 2005, Cooperative Interactions
17. Shrivats AR, McDermott MC, Hollinger JO, 2014, Bone between Activating Transcription Factor 4 and Runx2/Cbfa1
Tissue Engineering: State of the Union. Drug Discov Today, Stimulate Osteoblast-specific Osteocalcin Gene Expression.
19:781–86. J Biol Chem, 280:30689–96.
https://doi.org/10.1016/j.drudis.2014.04.010 https://doi.org/10.1074/jbc.M500750200
18. Winkler T, Sass FA, Duda GN, et al., 2018, A Review 29. Wang W, Chen J, Hui Y, et al., 2018, Down-Regulation of
of Biomaterials in Bone Defect Healing, Remaining miR-193a-3p Promotes Osteoblast Differentiation through
Shortcomings and Future Opportunities for Bone Tissue up-regulation of LGR4/ATF4 Signaling. Biochem Biophys
Engineering. Bone Joint Res, 7:232–43. Res Commun, 503:2186–93.
https://doi.org/10.1302/2046-3758.73.BJR-2017-0270.R1 https://doi.org/10.1016/j.bbrc.2018.08.011
110 International Journal of Bioprinting (2021)–Volume 7, Issue 1

