Page 92 - IJB-7-1
P. 92
Biodegradation, Antibacterial Performance and Cytocompatibility of SMLed ZK30-Cu-Mn
References Role of Manganese in Bone Formation: II. Effect upon
Chondroitin Sulfate Synthesis in Chick Epiphyseal Cartilage.
1. Johnston S, Shi Z, Venezuela J, et al., 2019, Investigating Arch Biochem Biophys, 133(1):22–8.
Mg Bio-corrosion In Vitro: Lessons Learned and 12. Liu Y, Koltick D, Byrne P, et al., 2013, Development of
Recommendations. JOM, 71(4):1406–13. a Transportable Neutron Activation Analysis System to
https://doi.org/10.1007/s11837-019-03327-9 Quantify Manganese in Bone In Vivo: Feasibility and
2. Zheng Z, Zhao MC, Tan L, et al., 2020, Corrosion Behavior Methodology. Physiol Meas, 34(12):1593.
of a Self-Sealing Coating Containing CeO Particles on Pure
2 https://doi.org/10.1088/0967-3334/34/12/1593
Mg Produced by Micro-Arc Oxidation. Surf Coat Technol, 13. Li WX, 2005, Magnesium and its Alloys. Central South
386:125456. University Press, Changsha.
https://doi.org/10.1016/j.surfcoat.2020.125456 14. Yu WH, Sing SL, Chua CK, et al., 2019, Particle-Reinforced
3. Lopes DR, Silva CL, Soares RB, et al., 2019, Cytotoxicity Metal Matrix Nanocomposites Fabricated by Selective
and Corrosion Behavior of Magnesium and Magnesium Laser Melting: A State of the Art Review. Prog Mater Sci,
Alloys in Hank’s Solution after Processing by High-Pressure 104:330–79.
Torsion. Adv Eng Mater, 21(8):1900391. https://doi.org/10.1016/j.pmatsci.2019.04.006
https://doi.org/10.1002/adem.201900391 15. Li X, Tan Y, Willy H, et al., 2019, Heterogeneously Tempered
4. Rua JM, Zuleta AA, Ramirez J, et al., 2019, Micro-Arc Martensitic High Strength Steel by Selective Laser Melting
Oxidation Coating on Porous Magnesium foam and its and its Micro-Lattice: Processing, Microstructure, Superior
Potential Biomedical Applications. Surf Coat Technol, Performance and Mechanisms. Mater Des, 178:107881.
360:213–21. https://doi.org/10.1016/j.matdes.2019.107881
https://doi.org/10.1016/j.surfcoat.2018.12.106 16. Zhao Y, Tang Y, Zhao M, et al., 2019, Graphene Oxide
5. Yan X, Zhao M, Yang Y, et al., 2019, Improvement of Reinforced Iron Matrix Composite with Enhanced
Biodegradable and Antibacterial Properties by Solution Biodegradation Rate Prepared by Selective Laser Melting.
Treatment and Micro-Arc Oxidation (MAO) of a Magnesium Adv Eng Mater, 21(8):1900314.
Alloy with a Trace of Copper. Corros Sci, 156:125–38. https://doi.org/10.1002/adem.201900314
https://doi.org/10.1016/j.corsci.2019.05.015 17. Gao C, Yao M, Li S, et al., 2019, Highly Biodegradable
6. Liu C, Fu X, Pan H, et al., 2016, Biodegradable Mg-Cu and Bioactive Fe-Pd-Bredigite Biocomposites Prepared by
Alloys with Enhanced Osteogenesis, Angiogenesis, and Selective Laser Melting. J Adv Res, 20:91–104.
Long-Lasting Antibacterial Effects. Sci Rep, 6:27374. https://doi.org/10.1016/j.jare.2019.06.001
https://doi.org/10.1038/srep27374 18. Sing SL, Huang S, Yeong WY, 2020, Effect of Solution Heat
7. Yan X, Wan P, Tan L, et al., 2018, Influence of Hybrid Treatment on Microstructure and Mechanical Properties of
Extrusion and Solution Treatment on the Microstructure and Laser Powder Bed Fusion Produced Cobalt-28Chromium-
Degradation Behavior of Mg-0.1Cu Alloy. Mater Sci Eng B, 6Molybdenum. Mater Sci Eng A, 769:138511.
229:105–17. https://doi.org/10.1016/j.msea.2019.138511
8. Gu X, Zheng Y, Cheng Y, et al., 2009, In Vitro Corrosion and 19. Tan JH, Sing SL, Yeong WY, 2020, Microstructure Modelling
Biocompatibility of Binary Magnesium Alloys. Biomaterials, for Metallic Additive Manufacturing: A Review. Virtual Phys
30:484–98. Prototyp, 15(1):87–105.
https://doi.org/10.1016/j.biomaterials.2008.10.021 https://doi.org/10.1080/17452759.2019.1677345
9. Ha HY, Kim HJ, Baek SM, et al., 2015, Improved Corrosion 20. Li X, Tan Y, Wang P, et al., 2020, Metallic Microlattice and
Resistance of Extruded Mg-8Sn-1Zn-1Al Alloy by Epoxy Interpenetrating Phase Composites: Experimental and
Microalloying with Mn. Scr Mater, 109:38–43. Simulation Studies on Superior Mechanical Properties and their
https://doi.org/10.1016/j.scriptamat.2015.07.013 Mechanisms. Compos Part A Appl Sci Manuf, 135:105934.
10. Yang Y, Wu P, Wang Q, et al., 2016, The Enhancement of https://doi.org/10.1016/j.compositesa.2020.105934
Mg Corrosion Resistance by Alloying Mn and Laser-Melting. 21. Nie XJ, Chen Z, Qi Y, et al., 2020, Effect of Defocusing
Materials, 9:216. Distance on Laser Powder Bed Fusion of High Strength Al-
https://doi.org/10.3390/ma9040216 Cu-Mg-Mn Alloy. Virtual Phys Prototyp, 15(3):325–39.
11. Leach RM, Muenster AM, Wien EM, 1969, Studies on the https://doi.org/10.1080/17452759.2020.1760895
88 International Journal of Bioprinting (2021)–Volume 7, Issue 1

