Page 92 - IJB-7-1
P. 92

Biodegradation, Antibacterial Performance and Cytocompatibility of SMLed ZK30-Cu-Mn
           References                                              Role  of  Manganese  in  Bone  Formation:  II.  Effect  upon
                                                                   Chondroitin Sulfate Synthesis in Chick Epiphyseal Cartilage.
           1.   Johnston  S,  Shi  Z, Venezuela  J,  et  al., 2019, Investigating   Arch Biochem Biophys, 133(1):22–8.
               Mg Bio-corrosion  In Vitro: Lessons Learned  and   12.  Liu  Y, Koltick  D, Byrne  P,  et  al., 2013,  Development  of
               Recommendations. JOM, 71(4):1406–13.                a  Transportable  Neutron  Activation  Analysis System to
               https://doi.org/10.1007/s11837-019-03327-9          Quantify  Manganese  in  Bone  In  Vivo:  Feasibility  and
           2.   Zheng Z, Zhao MC, Tan L, et al., 2020, Corrosion Behavior   Methodology. Physiol Meas, 34(12):1593.
               of a Self-Sealing Coating Containing CeO  Particles on Pure
                                             2                     https://doi.org/10.1088/0967-3334/34/12/1593
               Mg Produced by Micro-Arc Oxidation. Surf Coat Technol,   13.  Li  WX, 2005, Magnesium and its  Alloys. Central South
               386:125456.                                         University Press, Changsha.
               https://doi.org/10.1016/j.surfcoat.2020.125456  14.  Yu WH, Sing SL, Chua CK, et al., 2019, Particle-Reinforced
           3.   Lopes DR, Silva CL, Soares RB, et al., 2019, Cytotoxicity   Metal  Matrix  Nanocomposites  Fabricated  by  Selective
               and Corrosion Behavior of Magnesium and Magnesium   Laser Melting: A State of the Art Review. Prog Mater Sci,
               Alloys in Hank’s Solution after Processing by High-Pressure   104:330–79.
               Torsion. Adv Eng Mater, 21(8):1900391.              https://doi.org/10.1016/j.pmatsci.2019.04.006
               https://doi.org/10.1002/adem.201900391          15.  Li X, Tan Y, Willy H, et al., 2019, Heterogeneously Tempered
           4.   Rua  JM,  Zuleta  AA,  Ramirez  J,  et  al., 2019, Micro-Arc   Martensitic High Strength Steel by Selective Laser Melting
               Oxidation Coating on Porous Magnesium foam and its   and its Micro-Lattice: Processing, Microstructure, Superior
               Potential  Biomedical  Applications.  Surf Coat Technol,   Performance and Mechanisms. Mater Des, 178:107881.
               360:213–21.                                         https://doi.org/10.1016/j.matdes.2019.107881
               https://doi.org/10.1016/j.surfcoat.2018.12.106  16.  Zhao Y,  Tang Y,  Zhao  M,  et al., 2019, Graphene Oxide
           5.   Yan X,  Zhao M,  Yang  Y,  et al., 2019, Improvement of   Reinforced Iron Matrix Composite with Enhanced
               Biodegradable  and  Antibacterial  Properties by Solution   Biodegradation  Rate  Prepared  by Selective  Laser  Melting.
               Treatment and Micro-Arc Oxidation (MAO) of a Magnesium   Adv Eng Mater, 21(8):1900314.
               Alloy with a Trace of Copper. Corros Sci, 156:125–38.     https://doi.org/10.1002/adem.201900314
               https://doi.org/10.1016/j.corsci.2019.05.015    17.  Gao C,  Yao  M, Li  S,  et  al.,  2019,  Highly  Biodegradable
           6.   Liu  C,  Fu  X,  Pan  H,  et  al.,  2016,  Biodegradable  Mg-Cu   and  Bioactive  Fe-Pd-Bredigite  Biocomposites  Prepared  by
               Alloys with Enhanced  Osteogenesis,  Angiogenesis, and   Selective Laser Melting. J Adv Res, 20:91–104.
               Long-Lasting Antibacterial Effects. Sci Rep, 6:27374.     https://doi.org/10.1016/j.jare.2019.06.001
               https://doi.org/10.1038/srep27374               18.  Sing SL, Huang S, Yeong WY, 2020, Effect of Solution Heat
           7.   Yan X,  Wan P,  Tan L,  et al.,  2018,  Influence  of  Hybrid   Treatment on Microstructure and Mechanical Properties of
               Extrusion and Solution Treatment on the Microstructure and   Laser  Powder  Bed  Fusion  Produced  Cobalt-28Chromium-
               Degradation Behavior of Mg-0.1Cu Alloy. Mater Sci Eng B,   6Molybdenum. Mater Sci Eng A, 769:138511.
               229:105–17.                                         https://doi.org/10.1016/j.msea.2019.138511
           8.   Gu X, Zheng Y, Cheng Y, et al., 2009, In Vitro Corrosion and   19.  Tan JH, Sing SL, Yeong WY, 2020, Microstructure Modelling
               Biocompatibility of Binary Magnesium Alloys. Biomaterials,   for Metallic Additive Manufacturing: A Review. Virtual Phys
               30:484–98.                                          Prototyp, 15(1):87–105.
               https://doi.org/10.1016/j.biomaterials.2008.10.021     https://doi.org/10.1080/17452759.2019.1677345
           9.   Ha HY, Kim HJ, Baek SM, et al., 2015, Improved Corrosion   20.  Li X, Tan Y, Wang P, et al., 2020, Metallic Microlattice and
               Resistance  of Extruded  Mg-8Sn-1Zn-1Al  Alloy  by   Epoxy Interpenetrating Phase Composites: Experimental and
               Microalloying with Mn. Scr Mater, 109:38–43.        Simulation Studies on Superior Mechanical Properties and their
               https://doi.org/10.1016/j.scriptamat.2015.07.013    Mechanisms. Compos Part A Appl Sci Manuf, 135:105934.
           10.  Yang Y, Wu P, Wang Q, et al., 2016, The Enhancement of      https://doi.org/10.1016/j.compositesa.2020.105934
               Mg Corrosion Resistance by Alloying Mn and Laser-Melting.   21.  Nie XJ,  Chen Z, Qi Y,  et al., 2020, Effect of Defocusing
               Materials, 9:216.                                   Distance on Laser Powder Bed Fusion of High Strength Al-
               https://doi.org/10.3390/ma9040216                   Cu-Mg-Mn Alloy. Virtual Phys Prototyp, 15(3):325–39.
           11.  Leach RM, Muenster AM, Wien EM, 1969, Studies on the      https://doi.org/10.1080/17452759.2020.1760895

           88                          International Journal of Bioprinting (2021)–Volume 7, Issue 1
   87   88   89   90   91   92   93   94   95   96   97