Page 93 - IJB-7-1
P. 93
Xie, et al.
22. Huang S, Sing SL, Looze G, et al., 2020, Laser Powder Bed Magnes Alloys, 8(3):952–62.
Fusion of Titanium-Tantalum Alloys: Compositions and https://doi.org/10.1016/j.jma.2019.10.004
Designs for Biomedical Applications. J Mech Behav Biomed 31. Zhao MC, Zhao YC, Yin DF, et al., 2019, Biodegradation
Mater, 108:103775. Behavior of Coated As-Extruded Mg-Sr Alloy in Simulated
https://doi.org/10.1016/j.jmbbm.2020.103775 Body Fluid. Acta Metall Sin (Engl Lett), 32:1195–206.
23. Xu R, Zhao M, Zhao Y, et al., 2019, Improved Biodegradation https://doi.org/10.1007/s40195-019-00892-5
Resistance by Grain Refinement of Novel Antibacterial 32. Atrens AD, Gentle I, Atrens A, 2015, Possible Dissolution
ZK30-Cu Alloys Produced Via Selective Laser Melting. Pathways Participating in the Mg Corrosion Reaction. Corros
Mater Lett, 237:253–7. Sci, 92:173–81.
https://doi.org/10.1016/j.matlet.2018.11.071 https://doi.org/10.1016/j.corsci.2014.12.004
24. Zhao YC, Tang Y, Zhao MC, et al., 2020, Study on 33. Song GL, Atrens A, 1999, Corrosion Mechanisms of
Fe-xGO Composites Prepared by Selective Laser Magnesium Alloys. Adv Eng Mater, 1:11–33.
Melting: Microstructure, Hardness, Biodegradation and https://doi.org/10.1002/(sici)1527-2648(199909)1:1<11::aid-
Cytocompatibility. JOM, 72:1163–74. adem11>3.0.co;2-n
https://doi.org/10.1007/s11837-019-03814-z 34. Esmaily M, Svensson JE, Fajardo S, et al., 2017, Fundamentals
25. Zhao Y, Zhao M, Xu R, et al., 2019, Formation and and Advances in Magnesium Alloy Corrosion. Prog Mater
Characteristic Corrosion Behavior of Alternately Lamellar Sci, 89:92–193.
Arranged α and β in As-Cast AZ91 Mg Alloy. J Alloys https://doi.org/10.1016/j.pmatsci.2017.04.011
Compd, 770:549–58.
https://doi.org/10.1016/j.jallcom.2018.08.103 35. Zhang W, Tan LL, Li DR, et al., 2019, Effect of Grain
Refinement and Crystallographic Texture Produced by
26. Zhao MC, Liu M, Song GL, et al., 2008, Influence of the Friction Stir Processing on the Biodegradation Behavior of a
β-Phase Morphology on the Corrosion of the Mg Alloy
AZ91. Corros Sci, 50:1939–53. Mg-Nd-Zn Alloy. J Mater Sci Technol, 35(5):777–83.
27. Li Z, Chen M, Li W, et al., 2017, The Synergistic Effect https://doi.org/10.1016/j.jmst.2018.11.025
of Trace Sr and Zr on the Microstructure and Properties 36. Kirkland NT, Waterman J, Birbilis N, et al., 2012, Buffer-
of a Biodegradable Mg-Zn-Zr-Sr Alloy. J Alloys Compd, Regulated Bio-corrosion of Pure Magnesium. J Mater Sci
702:290–302. Mater Med, 23(2):283–91.
https://doi.org/10.1016/j.jallcom.2017.01.178 37. Nama ND, Mathesh M, Forsyth M, et al., 2012, Effect of
28. Zhang X, Hua L, Liu Y, 2012, FE simulation and Experimental Manganese Additions on the Corrosion Behavior of an
Investigation of ZK60 Magnesium Alloy with Different Extruded Mg-5Al Based Alloy. J Alloys Compd, 542:199–206.
Radial Diameters Processed by Equal Channel Angular https://doi.org/10.1016/j.jallcom.2012.07.083
Pressing. Mater Sci Eng A, 535:153–63. 38. Metalnikov P, Ben-Hamua G, Templeman Y, et al., 2018,
https://doi.org/10.1016/j.msea.2011.12.057 The Relation between Mn Additions, Microstructure and
29. Zhao MC, Schmutz P, Brunner S, et al., 2009, An Exploratory Corrosion Behavior of New Wrought Mg-5Al Alloys. Mater
Study of the Corrosion of Mg Alloys During Interrupted Salt Charact, 145:101–15.
Spray Testing. Corros Sci, 51(6):1277–92. https://doi.org/10.1016/j.matchar.2018.08.033
https://doi.org/10.1016/j.corsci.2009.03.014 39. Baril G, Pebere N, 2001, The Corrosion of Pure Magnesium
30. Tao JX, Zhao M, Zhao Y, et al., 2020, Influence of Graphene in Aerated and Deaerated Sodium Sulphate Solutions. Corros
Oxide (GO) on Microstructure and Biodegradation of ZK30- Sci, 43(3):471–84.
xGO Composites Prepared by Selective Laser Melting. J https://doi.org/10.1016/s0010-938x(00)00095-0
International Journal of Bioprinting (2021)–Volume 7, Issue 1 89

