Page 155 - IJB-7-3
P. 155

Zhou, et al.
               https://doi.org/10.1088/1758-5090/aadf58            Corresponding Percolated Micelle Networks of Thermogels.
           17.  Shi  L,  Carstensen  H, Hölzl  K,  et  al.,  2017,  Dynamic   Macromolecules, 51:6405–20.
               Coordination Chemistry Enables Free Directional Printing of      https://doi.org/10.1021/acs.macromol.8b01014
               Biopolymer Hydrogel. Chem Mater, 29:5816–23.    28.  Jeong B, Bae YH, Kim SW, 1999, Thermoreversible Gelation
               https://doi.org/10.1021/acs.chemmater.7b00128.s001  of PEG-PLGA-PEG Triblock Copolymer Aqueous Solutions.
           18.  Pati F, Jang J, Ha DH, et al., 2014, Printing Three-Dimensional   Macromolecules, 32:7064–9.
               Tissue Analogues with Decellularized Extracellular  Matrix      https://doi.org/10.1021/ma9908999
               Bioink. Nat Commun, 5:3935.                     29.  Yu L, Zhang H, Ding J, 2006, A Subtle End-Group Effect
               https://doi.org/10.1038/ncomms4935                  on Macroscopic  Physical Gelation of  Triblock  Copolymer
           19.  Nielsen JE, Zhu K, Sande SA,  et al., 2017, Structural   Aqueous Solutions. Angew Chem Int Ed, 45:2232–5.
               and Rheological  Properties of  Temperature-Responsive      https://doi.org/10.1002/anie.200503575
               Amphiphilic Triblock Copolymers in Aqueous Media. J Phys   30.  Zhou X, He X, Shi K, et al., 2020, Injectable Thermosensitive
               Chem B, 121:4885–99.                                Hydrogel Containing Erlotinib-Loaded Hollow Mesoporous
               https://doi.org/10.1021/acs.jpcb.7b01174.s001       Silica Nanoparticles as a Localized Drug Delivery System for
           20.  Bae SJ, Suh JM, Sohn YS, et al., 2005, Thermogelling Poly   NSCLC Therapy. Adv Sci, 7:2001442.
               (Caprolactone-b-Ethylene  Glycol-b-Caprolactone)  Aqueous      https://doi.org/10.1002/advs.202001442
               Solutions. Macromolecules, 38:5260–5.           31.  Ci T, Shen Y, Cui S, et al., 2017, Achieving High Drug Loading
               https://doi.org/10.1021/ma050489m                   and Sustained Release of Hydrophobic Drugs in Hydrogels
           21.  Chen L, Ci T, Li T, et al., 2014, Effects of Molecular Weight   through In Situ Crystallization. Macromol Biosci, 17:1600299.
               Distribution  of  Amphiphilic  Block Copolymers  on  Their      https://doi.org/10.1002/mabi.201600299
               Solubility, Micellization, and Temperature-Induced Sol-Gel   32.  Ni P, Ding Q, Fan M, et al., 2014, Injectable Thermosensitive
               Transition in Water. Macromolecules, 47:5895–903.   PEG-PCL-PEG Hydrogel/acellular Bone Matrix Composite
               https://doi.org/10.1021/ma501110p                   for Bone  Regeneration  in  Cranial  Defects.  Biomaterials,
           22.  Cui S, Yu L, Ding J, 2019, Thermogelling of Amphiphilic   35:236–48.
               Block Copolymers in Water: ABA Type Versus AB or BAB      https://doi.org/10.1016/j.biomaterials.2013.10.016
               Type. Macromolecules, 52:3697–715.              33.  Zhang Z, Lai Y, Yu L, et al., 2010, Effects of Immobilizing
               https://doi.org/10.1021/acs.macromol.9b00534        Sites of RGD Peptides in Amphiphilic Block Copolymers on
           23.  Chen L, Ci  T,  Yu L,  et al.,  2015,  Effects  of  Molecular   Efficacy of Cell Adhesion. Biomaterials, 31:7873–82.
               Weight and Its Distribution of PEG Block on Micellization      https://doi.org/10.1016/j.biomaterials.2010.07.014
               and  Thermogellability  of PLGA-PEG-PLGA Copolymer   34.  Yu L, Ding J, 2008, Injectable  Hydrogels as Unique
               Aqueous Solutions. Macromolecules, 48:3662–71.      Biomedical Materials. Chem Soc Rev, 37:1473–81.
               https://doi.org/10.1021/acs.macromol.5b00168        https://doi.org/10.1039/b713009k
           24.  Zhang Z, Ni J, Chen L,  et  al., 2011, Biodegradable  and   35.  Park MH,  Joo MK,  Choi BG,  et al., 2012, Biodegradable
               Thermoreversible PCLA-PEG-PCLA Hydrogel as a Barrier   Thermogels. Acc Chem Res, 45:424–33.
               for Prevention of Post-Operative  Adhesion.  Biomaterials,   36.  Song  KH,  Highley  C  B,  Rouff  A,  et al., 2018, Complex
               32:4725–36.                                         3D-Printed  Microchannels  within  Cell-Degradable
               https://doi.org/10.1016/j.biomaterials.2011.03.046  Hydrogels. Adv Funct Mater, 28:1801331.
           25.  Yoshida  Y, Kawahara K, Inamoto K,  et al., 2016,      https://doi.org/10.1002/adfm.201801331
               Biodegradable Injectable Polymer Systems Exhibiting   37.  Wang Z, An G, Zhu Y, et al., 2019, 3D-Printable Self-Healing
               Temperature-Responsive Irreversible Sol-to-Gel Transition by   and Mechanically  Reinforced  Hydrogels with Host-Guest
               Covalent Bond Formation. ACS Biomater Sci Eng, 3:56–67.  Non-Covalent Interactions Integrated Into Covalently Linked
               https://doi.org/10.1021/acsbiomaterials.6b00581.s001  Networks. Mater Horiz, 6:733–42.
           26.  Vidyasagar  A, Ku SH, Kim  M,  et  al., 2017, Design and      https://doi.org/10.1039/c8mh01208c
               Characterization  of a PVLA-PEG-PVLA  Thermosensitive   38.  Wlodarczyk-Biegun  MK, Paez  JI,  Villiou  M,  et  al.,  2020,
               and Biodegradable Hydrogel. ACS Macro Lett, 6:1134–9.  Printability  Study of Metal  Ion Crosslinked PEG-Catechol
               https://doi.org/10.1021/acsmacrolett.7b00523        Based Inks. Biofabrication, 12:035009.
           27.  Cui S,  Yu  L,  Ding  J, 2018, Semi-Bald  Micelles  and      https://doi.org/10.1088/1758-5090/ab673a

                                       International Journal of Bioprinting (2021)–Volume 7, Issue 3       151
   150   151   152   153   154   155   156   157   158   159   160