Page 156 - IJB-7-3
P. 156

A Dual-Sensitive Hydrogel for 3D Printing
           39.  Chimene D, Peak CW, Gentry JL, et al., 2018, Nanoengineered      https://doi.org/10.1088/1758-5090/aadc9e
               Ionic-Covalent  Entanglement  (NICE) Bioinks for 3D   45.  Yue K, Trujillo-de  Santiago G, Alvarez MM,  et al., 2015,
               Bioprinting. ACS Appl Mater Interfaces, 10:9957–68.  Synthesis, Properties, and Biomedical Applications of Gelatin
               https://doi.org/10.1021/acsami.7b19808              Methacryloyl (GelMA) Hydrogels. Biomaterials, 73:254–71.
           40.  Pi Q, Maharjan  S,  Yan X,  et  al., 2018, Digitally  Tunable      https://doi.org/10.1016/j.biomaterials.2015.08.045
               Microfluidic Bioprinting of Multilayered Cannular Tissues.   46.  Kirillova  A, Maxson R, Stoychev  G,  et  al., 2017, 4D
               Adv Mater, 30:1706913.                              Biofabrication  Using Shape-Morphing Hydrogels.  Adv
               https://doi.org/10.1002/adma.201706913              Mater, 29:1703443.
           41.  Rutz AL, Gargus ES, Hyland KE, et al., 2019, Employing      https://doi.org/10.1002/adma.201703443
               PEG Crosslinkers to Optimize  Cell Viability  in Gel Phase   47.  Peak CW, Stein J, Gold KA, et al., 2018, Nanoengineered
               Bioinks and Tailor Post Printing Mechanical Properties. Acta   Colloidal Inks for 3D Bioprinting. Langmuir, 34:917–25.
               Biomater, 99:121–32.                                https://doi.org/10.1021/acs.langmuir.7b02540
               https://doi.org/10.1016/j.actbio.2019.09.007    48.  He Y, Yang F, Zhao H, et al., 2016, Research on the Printability
           42.  Rutz AL, Hyland KE, Jakus AE, et al., 2015, A Multimaterial   of Hydrogels in 3D Bioprinting. Sci Rep, 6:29977.
               Bioink  Method  for 3D Printing  Tunable,  Cell-Compatible   49.  Ouyang L,  Yao R, Zhao  Y,  et al.,  2016,  Effect  of  Bioink
               Hydrogels. Adv Mater, 27:1607–14.                   Properties on Printability and Cell Viability for 3D Bioplotting
               https://doi.org/10.1002/adma.201405076              of Embryonic Stem Cells. Biofabrication, 8:035020.
           43.  Mehrotra S, de Melo BA, Hirano M, et al., 2020, Nonmulberry      https://doi.org/10.1088/1758-5090/8/3/035020
               Silk Based Ink for Fabricating Mechanically Robust Cardiac   50.  Ribeiro A, Blokzijl MM, Levato R, et al., 2017, Assessing
               Patches  and  Endothelialized  Myocardium-on-a-Chip  Bioink Shape Fidelity to Aid Material Development in 3D
               Application. Adv Funct Mater, 30:1907436.           Bioprinting. Biofabrication, 10:014102.
               https://doi.org/10.1002/adfm.201907436              https://doi.org/10.1088/1758-5090/aa90e2
           44.  Sakai S, Mochizuki K, Qu  Y,  et al., 2018, Peroxidase-  51.  Xu C, Lee W, Dai G, et al., 2018, Highly Elastic Biodegradable
               Catalyzed Microextrusion Bioprinting of Cell-laden Hydrogel   Single-Network Hydrogel for Cell Printing. ACS Appl Mater
               Constructs in  Vaporized  ppm-Level  Hydrogen Peroxide.   Interfaces, 10:9969–79.
               Biofabrication, 10:045007.                          https://doi.org/10.1021/acsami.8b01294






































           152                         International Journal of Bioprinting (2021)–Volume 7, Issue 3
   151   152   153   154   155   156   157   158   159   160   161