Page 61 - IJB-7-4
P. 61

Lin, et al.
               https://doi.org/10.1021/acsami.6b00815              Tissue. Nat Biotechnol, 23:821–3.
           6.   Faldini C, Traina F, Perna F, et al., 2015, Surgical Treatment      https://doi.org/10.1038/nbt0705-821
               of Aseptic Forearm Nonunion with Plate and Opposite Bone   18.  Ma Y, Dai H, Huang X, et al., 2019, 3D Printing of Bioglass-
               Graft Strut. Autograft or Allograft? Int Orthop, 39:1343–9.  reinforced  β-TCP  Porous  Bioceramic  Scaffolds.  J  Mater,
               https://doi.org/10.1007/s00264-015-2718-6           54:10437–46.
           7.   Arrington  ED,  Smith  WJ,  Chambers  HG,  et al.,  1996,      https://doi.org/10.1007/s10853-019-03632-3
               Complications  of Iliac  Crest  Bone  Graft Harvesting.  Clin   19.  Woodfield T, Malda J, Wijn JD, et al., 2004, Design of Porous
               Orthop Relat Res, 329:300–9.                        Scaffolds  for  Cartilage Tissue  Engineering  Using  a  Three-
               https://doi.org/10.1243/09596518JSCE892             dimensional  Fiber-deposition  Technique.  Biomaterials,
           8.   Lai  Y,  Cao  H,  Wang  X,  et  al.,  2018,  Porous  Composite   25:4149–61.
               Scaffold  Incorporating  Osteogenic  Phytomolecule  Icariin      https://doi.org/10.1016/j.biomaterials.2003.10.056
               for Promoting  Skeletal  Regeneration  in Challenging   20.  Hutmacher  DW,  2001,  Scaffold  Design  and  Fabrication
               Osteonecrotic Bone in Rabbits. Biomaterials, 153:1–13.  Technologies  for  Engineering Tissues  State  of  the Art  and
               https://doi.org/10.1016/j.biomaterials.2017.10.025  Future Perspectives. J Biomater Sci Polym Ed, 12:107–24.
           9.   Almubarak S, Nethercott H, Freeberg M, et al., 2016, Tissue      https://doi.org/10.1163/156856201744489
               Engineering  Strategies  for  Promoting  Vascularized  Bone   21.  ASTM F2792-12a, 2012, Standard Terminology for Additive
               Regeneration. Bone, 83:197–209.                     Manufacturing  Technologies.  West  Conshohocken,  PA:
               https://doi.org/10.1016/j.bone.2015.11.011          ASTM International.
           10.  Kim JA,  Lim J, Naren R,  et al.,  2016,  Effect  of  the   22.  Shahrubudin N, Lee  TC, Ramlan R, 2019,  An Overview
               Biodegradation  Rate Controlled by Pore Structures in   on 3D Printing  Technology:  Technological,  Materials,  and
               Magnesium  Phosphate  Ceramic  Scaffolds  on  Bone  Tissue   Applications. Proc Manufact, 35:1286–96.
               Regeneration In Vivo. Acta Biomater, 44:155–67.     https://doi.org/10.1016/j.promfg.2019.06.089
               https://doi.org/10.1016/j.actbio.2016.08.039    23.  Mahajan C, Cormier D, 2015, 3D Printing of Carbon Fiber
           11.  Williams DF, 2008, On the Mechanisms of Biocompatibility.   Composites with Preferentially Aligend Fibers. Industrial and
               Biomaterials, 29:2941–53.                           Systems Engineering Research Conference.
               https://doi.org/10.1016/j.biomaterials.2008.04.023  24.  Yeong  WY,  Guo  DG,  2020,  3D  Printing  of  Carbon  Fiber
           12.  Yao  Y,  Qin  W,  Xing  B,  et  al., 2021, Highperformance   Composite:  The  Future  of Composite  Industry?  Materials,
               Hydroxyapatite  Ceramics  and a  Triply Periodic Minimum   2:1361–3.
               Surface Structure Fabricated by Digital Light Processing 3D      https://doi.org/10.1016/j.matt.2020.05.010
               printing. J Adv Ceramics, 10:39–48.             25.  Murphy  SV,  Coppi  PD, Atala A,  2019,  Opportunities  and
               https://doi.org/10.1007/s40145-020-0415-4           Challenges of Translational 3D Bioprinting. Nat Biomed Eng,
           13.  Rouwkema J, Rivior NC, Van CA, et al., 2008, Vascularization   4:370–80.
               in Tissue Engineering. Trends Biotechnol, 26:434–41.     https://doi.org/10.1038/s41551-019-0471-7
               https://doi.org/10.1016/j.tibtech.2008.04.009   26.  Savage  N,  2016,  Technology:  The  Promise  of  Printing.
           14.  Cao  H,  Kuboyama  N,  2010,  A  Biodegradable  Porous   Nature, 540:S56–7.
               Composite  Scaffold  of  PGA/beta-TCP  for  Bone  Tissue      https://doi.org/10.1038/540S56a
               Engineering. Bone, 46:386–95.                   27.  Boskey AL, 2015, Bone Composition: Relationship to Bone
               https://doi.org/10.1016/j.bone.2009.09.031          Fragility  and Antiosteoporotic  Drug  Effects.  Bonekey  Rep,
           15.  Olszta  M,  Cheng  X,  Jee  S,  et  al.,  2007,  Bone  Structure   4:710.
               and Formation: A New Perspective. Mater Sci Eng R Rep,      https://doi.org/10.1038/bonekey.2015.79
               58:77–116.                                      28.  Fu S, Zhu M, Zhu Y, 2019, Organosilicon Polymer-derived
               https://doi.org/10.1016/j.mser.2007.05.001          Ceramics: An Overview. J Adv Ceramics, 8:457–78.
           16.  Bramfeldt  H,  Sabra  G,  Centis  V,  et al.,  2010,  Scaffold      https://doi.org/10.1007/s40145-019-0335-3
               Vascularization: A Challenge for Three-Dimensional Tissue   29.  Fahmy  MD, Jazayeri  HE, Razavi  M,  et  al.,  2016,  Three-
               Engineering. CMC, 17:3944–67.                       Dimensional Bioprinting Materials with Potential Application
               https://doi.org/10.2174/092986710793205327          in Preprosthetic Surgery. J Prosthodont, 25:310–8.
           17.  Jain RK, Au P, Tam J, et al., 2005, Engineering Vascularized      https://doi.org/10.1111/jopr.12431

                                       International Journal of Bioprinting (2021)–Volume 7, Issue 4        57
   56   57   58   59   60   61   62   63   64   65   66