Page 61 - IJB-7-4
P. 61
Lin, et al.
https://doi.org/10.1021/acsami.6b00815 Tissue. Nat Biotechnol, 23:821–3.
6. Faldini C, Traina F, Perna F, et al., 2015, Surgical Treatment https://doi.org/10.1038/nbt0705-821
of Aseptic Forearm Nonunion with Plate and Opposite Bone 18. Ma Y, Dai H, Huang X, et al., 2019, 3D Printing of Bioglass-
Graft Strut. Autograft or Allograft? Int Orthop, 39:1343–9. reinforced β-TCP Porous Bioceramic Scaffolds. J Mater,
https://doi.org/10.1007/s00264-015-2718-6 54:10437–46.
7. Arrington ED, Smith WJ, Chambers HG, et al., 1996, https://doi.org/10.1007/s10853-019-03632-3
Complications of Iliac Crest Bone Graft Harvesting. Clin 19. Woodfield T, Malda J, Wijn JD, et al., 2004, Design of Porous
Orthop Relat Res, 329:300–9. Scaffolds for Cartilage Tissue Engineering Using a Three-
https://doi.org/10.1243/09596518JSCE892 dimensional Fiber-deposition Technique. Biomaterials,
8. Lai Y, Cao H, Wang X, et al., 2018, Porous Composite 25:4149–61.
Scaffold Incorporating Osteogenic Phytomolecule Icariin https://doi.org/10.1016/j.biomaterials.2003.10.056
for Promoting Skeletal Regeneration in Challenging 20. Hutmacher DW, 2001, Scaffold Design and Fabrication
Osteonecrotic Bone in Rabbits. Biomaterials, 153:1–13. Technologies for Engineering Tissues State of the Art and
https://doi.org/10.1016/j.biomaterials.2017.10.025 Future Perspectives. J Biomater Sci Polym Ed, 12:107–24.
9. Almubarak S, Nethercott H, Freeberg M, et al., 2016, Tissue https://doi.org/10.1163/156856201744489
Engineering Strategies for Promoting Vascularized Bone 21. ASTM F2792-12a, 2012, Standard Terminology for Additive
Regeneration. Bone, 83:197–209. Manufacturing Technologies. West Conshohocken, PA:
https://doi.org/10.1016/j.bone.2015.11.011 ASTM International.
10. Kim JA, Lim J, Naren R, et al., 2016, Effect of the 22. Shahrubudin N, Lee TC, Ramlan R, 2019, An Overview
Biodegradation Rate Controlled by Pore Structures in on 3D Printing Technology: Technological, Materials, and
Magnesium Phosphate Ceramic Scaffolds on Bone Tissue Applications. Proc Manufact, 35:1286–96.
Regeneration In Vivo. Acta Biomater, 44:155–67. https://doi.org/10.1016/j.promfg.2019.06.089
https://doi.org/10.1016/j.actbio.2016.08.039 23. Mahajan C, Cormier D, 2015, 3D Printing of Carbon Fiber
11. Williams DF, 2008, On the Mechanisms of Biocompatibility. Composites with Preferentially Aligend Fibers. Industrial and
Biomaterials, 29:2941–53. Systems Engineering Research Conference.
https://doi.org/10.1016/j.biomaterials.2008.04.023 24. Yeong WY, Guo DG, 2020, 3D Printing of Carbon Fiber
12. Yao Y, Qin W, Xing B, et al., 2021, Highperformance Composite: The Future of Composite Industry? Materials,
Hydroxyapatite Ceramics and a Triply Periodic Minimum 2:1361–3.
Surface Structure Fabricated by Digital Light Processing 3D https://doi.org/10.1016/j.matt.2020.05.010
printing. J Adv Ceramics, 10:39–48. 25. Murphy SV, Coppi PD, Atala A, 2019, Opportunities and
https://doi.org/10.1007/s40145-020-0415-4 Challenges of Translational 3D Bioprinting. Nat Biomed Eng,
13. Rouwkema J, Rivior NC, Van CA, et al., 2008, Vascularization 4:370–80.
in Tissue Engineering. Trends Biotechnol, 26:434–41. https://doi.org/10.1038/s41551-019-0471-7
https://doi.org/10.1016/j.tibtech.2008.04.009 26. Savage N, 2016, Technology: The Promise of Printing.
14. Cao H, Kuboyama N, 2010, A Biodegradable Porous Nature, 540:S56–7.
Composite Scaffold of PGA/beta-TCP for Bone Tissue https://doi.org/10.1038/540S56a
Engineering. Bone, 46:386–95. 27. Boskey AL, 2015, Bone Composition: Relationship to Bone
https://doi.org/10.1016/j.bone.2009.09.031 Fragility and Antiosteoporotic Drug Effects. Bonekey Rep,
15. Olszta M, Cheng X, Jee S, et al., 2007, Bone Structure 4:710.
and Formation: A New Perspective. Mater Sci Eng R Rep, https://doi.org/10.1038/bonekey.2015.79
58:77–116. 28. Fu S, Zhu M, Zhu Y, 2019, Organosilicon Polymer-derived
https://doi.org/10.1016/j.mser.2007.05.001 Ceramics: An Overview. J Adv Ceramics, 8:457–78.
16. Bramfeldt H, Sabra G, Centis V, et al., 2010, Scaffold https://doi.org/10.1007/s40145-019-0335-3
Vascularization: A Challenge for Three-Dimensional Tissue 29. Fahmy MD, Jazayeri HE, Razavi M, et al., 2016, Three-
Engineering. CMC, 17:3944–67. Dimensional Bioprinting Materials with Potential Application
https://doi.org/10.2174/092986710793205327 in Preprosthetic Surgery. J Prosthodont, 25:310–8.
17. Jain RK, Au P, Tam J, et al., 2005, Engineering Vascularized https://doi.org/10.1111/jopr.12431
International Journal of Bioprinting (2021)–Volume 7, Issue 4 57

