Page 54 - IJB-8-1
P. 54

Controlling Droplet Impact Velocity and Droplet Volume Improves Cell Viability in Droplet-Based Bioprinting
               Viability in Droplet-based Cell Deposition. Sci Rep, 5:11304.  with an Unyielding Dry Surface. Proc R Soc London A Math
               https://doi.org/10.1038/srep11304                   Phys Sci, 373:419–41.
           40.  Gorr HM, Zueger JM, McAdams DR, et al., 2013, Salt-induced      https://doi.org/10.1098/rspa.1981.0002
               Pattern  Formation  in  Evaporating  Droplets  of  Lysozyme   53.  Mundo C, Sommerfeld  M,  Tropea C, 1995, Droplet-wall
               Solutions. Colloids Surf B Biointerfaces, 103:59–66.  Collisions: Experimental  Studies of the Deformation  and
               https://doi.org/10.1016/j.colsurfb.2012.09.043      Breakup Process. Int J Multiphase Flow, 21:151–73.
           41.  Rutgers IR, 1962, Relative Viscosity of Suspensions of Rigid      https://doi.org/10.1016/0301-9322(94)00069-v
               Spheres in Newtonian liquids. Rheol Acta, 2:202–10.  54.  Yarin AL, Weiss DA, 1995, Impact of Drops on Solid Surfaces:
           42.  Ng WL, Yeong WY, Naing MW, 2017, Polyvinylpyrrolidone-  Self-similar Capillary Waves, and Splashing as a New Type
               Based  Bio-Ink  Improves  Cell  Viability  and  Homogeneity   of Kinematic Discontinuity. J Fluid Mech, 283:141–73.
               during Drop-On-Demand Printing. Materials, 10:190.     https://doi.org/10.1017/s0022112095002266
               https://doi.org/10.3390/ma10020190              55.  Wal  RL,  Berger  GM,  Mozes  SD,  2006,  The  Splash/Non-
           43.  Xu  C, Zhang M,  Huang Y,  et al., 2014, Study of Droplet   splash Boundary Upon a Dry Surface and thin Fluid Film.
               Formation  Process  during  Drop-on-Demand  Inkjetting  of   Exp Fluids, 40:53–9.
               Living Cell-Laden Bioink. Langmuir, 30:9130–8.      https://doi.org/10.1007/s00348-005-0045-1
               https://doi.org/10.1021/la501430x               56.  Moreira  AL, Moita  AS, Panão MR, 2010,  Advances and
           44.  Dong L, Johnson  D, 2003, Surface  Tension of Charge-  challenges in explaining fuel spray impingement: How much
               stabilized Colloidal Suspensions at the Water Air Interface.   of single droplet  impact  research  is useful?  Prog Energy
               Langmuir, 19:10205–9.                               Combust Sci, 36:554–80.
               https://doi.org/10.1021/la035128j                   https://doi.org/10.1016/j.pecs.2010.01.002
           45.  Jang D, Kim D, Moon J, 2009, Influence of Fluid Physical   57.  Lee JB, Derome  D, Guyer R,  et  al., 2016, Modeling  the
               Properties on Ink-jet Printability. Langmuir, 25:2629–35.  Maximum Spreading of Liquid Droplets Impacting Wetting
               https://doi.org/10.1021/la900059m                   and Nonwetting Surfaces. Langmuir, 32:1299–308.
           46.  Lee  A, Sudau K,  Ahn KH,  et al.,  2012,  Optimization  of      https://doi.org/10.1021/acs.langmuir.5b04557
               Experimental  Parameters  to  Suppress  Nozzle  Clogging  in   58.  Shaikeea  AJ,  Basu  S,  Tyagi  A,  et  al., 2017, Universal
               Inkjet Printing. Ind Eng Chem Res, 51:13195–204.    Representations of Evaporation Modes in Sessile Droplets.
               https://doi.org/10.1021/ie301403g                   PLoS One, 12:e0184997.
           47.  Srichan  C,  Saikrajang  T,  Lomas  T,  et al.,  2009,  Inkjet      https://doi.org/10.1371/journal.pone.0184997
               Printing  PEDOT:  PSS  Using  Desktop  Inkjet  Printer.   59.  Goh GL, Saengchairat N, Agarwala S, et al., 2019, Sessile
               2009 6  International Conference on Electrical Engineering/  Droplets  Containing  Carbon  Nanotubes:  A  Study  of
                    th
               Electronics, Computer, Telecommunications and Information   Evaporation  Dynamics and CNT  Alignment  for Printed
               Technology, IEEE, p465–8.                           Electronics. Nanoscale, 11:10603–14.
               https://doi.org/10.1109/ecticon.2009.5137049        https://doi.org/10.1039/c9nr03261d
           48.  Derby  B,  Reis  N,  2003,  Inkjet  Printing  of  Highly  Loaded   60.  Birdi K, Vu D, 1993, Wettability and the Evaporation Rates
               Particulate Suspensions. MRS Bull, 28:815–18.       of Fluids from Solid Surfaces. J Adhes Sci Technol, 7:485–93.
               https://doi.org/10.1557/mrs2003.230                 https://doi.org/10.1163/156856193x00808
           49.  Yarin AL, 2006, Drop Impact Dynamics: Splashing, Spreading,   61.  Hu H, Larson RG, 2002, Evaporation of a Sessile Droplet on
               Receding, Bouncing. Annu Rev Fluid Mech, 38:159–92.  a Substrate. J Phys Chem B, 106:1334–44.
               https://doi.org/10.1146/annurev.fluid.38.050304.092144  62.  Maeno E, Takahashi N, Okada Y, Dysfunction of Regulatory
           50.  Rioboo R, Tropea C, Marengo M, 2001, Outcomes from a Drop   Volume Increase is a Key Component of Apoptosis. FEBS
               Impact on Solid Surfaces. Atomization Sprays, 11:155–66.  Lett, 580:6513–7.
               https://doi.org/10.1615/atomizspr.v11.i2.40         https://doi.org/10.1016/j.febslet.2006.10.074
           51.  Josserand C, Thoroddsen ST, 2016, Drop Impact on a Solid
               Surface. Annu Rev Fluid Mech, 48:365–91.        Publisher’s note
               https://doi.org/10.1146/annurev-fluid-122414-034401  Whioce  Publishing remains neutral  with regard to
           52.  Stow CD, Hadfield MG, 1981, An Experimental Investigation   jurisdictional claims in published maps and institutional
               of Fluid Flow Resulting from the Impact of a Water Drop   affiliations.

           40                          International Journal of Bioprinting (2022)–Volume 8, Issue 1
   49   50   51   52   53   54   55   56   57   58   59