Page 182 - IJB-8-3
P. 182

Composite Scaffolds for Skin Repair
               https://doi.org/1016/j.critrevonc.2015.05.011   52.  Klotz BJ, Gawlitta D, Rosenberg AJ, et al., 2016, Gelatin-
           41.  Dashnyam  K,  Jin  GZ,  Kim  JH, et al.,  2017,  Promoting   Methacryloyl  Hydrogels:  Towards  Biofabrication-Based
               Angiogenesis  with  Mesoporous  Microcarriers  through  a   Tissue Repair. Trends Biotechnol, 34:394–407.
               Synergistic  Action  of  Delivered  Silicon  Ion  and  VEGF.      https://doi.org/1016/j.tibtech.2016.01.002
               Biomaterials, 116:145–57.                       53.  Huang X, Guo X, Qu L, et al., 2021, Gradient Regulation of
               https://doi.org/1016/j.biomaterials.2016.11.053     Osteo-immune Microenvironment by Chitooligosaccharide-
           42.  Ma J, Qin C, Wu J, et al., 2021, 3D Printing of Strontium   containing  Ion-doped  Mesoporous  Silica  Nanoparticles  to
               Silicate Microcylinder-Containing Multicellular Biomaterial   Accelerate Osteogenesis. Appl Mater Today, 23:101067.
               Inks for Vascularized Skin Regeneration. Adv Healthc Mater,      https://doi.org/1016/j.apmt.2021.101067
               10:2100523.                                     54.  Chen Y,  Zhang  X,  Liu  Z, et  al.,  2021,  Obstruction  of  the
               https://doi.org/1002/adhm.202100523                 Formation of Granulation Tissue Leads to Delayed Wound
           43.  Zhai  W,  Lu  H,  Chen  L, et al.,  2012,  Silicate  Bioceramics   Healing  after  Scald  Burn  Injury  in  Mice.  Burns Trauma,
               Induce  Angiogenesis  During  Bone  Regeneration.  Acta   9:tkab004.
               Biomater, 8:341–9.                                  https://doi.org/1093/burnst/tkab004
               https://doi.org/1016/j.actbio.2011.09.008       55.  Tuan TL, Nichter LS, 1998, The Molecular Basis of Keloid
           44.  Ahluwalia A, Tarnawski AS, 2012, Critical Role of Hypoxia   and Hypertrophic Scar Formation. Mol Med Today, 4:19–24.
               Sensor HIF-1 alpha in VEGF Gene Activation. Implications      https://doi.org/1016/S1357-4310(97)80541-2
               for Angiogenesis and Tissue Injury Healing. Curr Med Chem,   56.  Albelda SM, Muller WA, Buck CA, et al., 1991, Molecular
               19:90–7.                                            and  cellular  properties  of  pecam-1  (ENDOCAM/CD31)
           45.  Pugh CW, Ratcliffe PJ, 2003, Regulation of Angiogenesis by   a  novel  vascular  cell  cell-adhesion  molecule.  J  Cell  Biol,
               Hypoxia: Role of the HIF System. Nat Med, 9:677–84.  114:1059–68.
               https://doi.org/1038/nm0603-677                     https://doi.org/1083/jcb.114.5.1059
           46.  Kogata  N,  Arai  Y,  Hashimoto  K, et al.,  2004,  Vascular   57.  Arcangeli G, Cupelli V, Giuliano G, 2001, Effects of Silica
               Endothelial  Cadherin-Expressing  Cells  Involved  in  Both   on  Human  Lung  Fibroblast  in  Culture.  Sci Total Environ,
               Developmental  and  Adult  Neovascularization.  Blood,   270:135–9.
               104:2610–26.                                        https://doi.org/1016/s0048-9697(00)00781-6
               https://doi.org/1182/blood.V104.11.26           58.  Park JU, Jung HD, Song EH, et al., 2017, The Accelerating
           47.  Zachary I, 1998, Vascular Endothelial Growth Factor. Int J   Effect of  Chitosan-silica Hybrid  Dressing  Materials on  the
               Biochem Cell Biol, 30:1169–74.                      Early Phase of Wound Healing. J Biomed Mater Res B Appl
               https://doi.org/1016/S1357-2725(98)00082-X          Biomater, 105:1828–39.
           48.  Karkkainen  MJ,  Petrova  TV,  2000,  Vascular  Endothelial      https://doi.org/1002/jbm.b.33711
               Growth Factor Receptors in the Regulation of Angiogenesis   59.  Enciso N, Avedillo L, Fermín ML, et al., 2020, Cutaneous
               and Lymphangiogenesis. Oncogene, 19:5598–605.       Wound Healing: Canine Allogeneic ASC Therapy. Stem Cell
               https://doi.org/1038/sj.onc.1203855                 Res Ther, 11:261.
           49.  Loucaide S, Cappelle PV, Behrends T, 2008, Dissolution of      https://doi.org/1186/s13287-020-01778-5
               biogenic silica from land to ocean: Role of salinity and pH.   60.  Brokesh AM,  Gaharwar AK,  2020,  Inorganic  Biomaterials
               Limnol Oceanogr, 53:1614–21.                        for  Regenerative  Medicine.  ACS  Appl  Mater Interfaces,
               https://doi.org/4319/lo.2008.53.4.1614              12:5319–44.
           50.  Dove PM, Crerar DA, 1990, Kinetics of Quartz Dissolution      https://doi.org/1021/acsami.9b17801
               in Electrolyte-solutions Using a Hydrothermal Mixed Flow   61.  Reffitt  DM,  Ogston  N,  Jugdaohsingh  R, et al.,  2003,
               Reactor. Geochim Cosmochim Acta, 54:955–69.         Orthosilicic Acid Stimulates Collagen Type 1 Synthesis and
               https://doi.org/1016/0016-7037(90)90431-j           Osteoblastic Differentiation in Human Osteoblast-like Cells
           51.  Sirova  M,  Vlierberghe  SV,  Matyasova  V, et al.,  2014,   In Vitro. Bone, 32:127–35.
               Immunocompatibility   Evaluation   of   Hydrogel-coated      https://doi.org/1016/S8756-3282(02)00950-X
               Polyimide  Implants  for  Applications  in  Regenerative   62.  Carmeliet  P,  Jain  RK,  2011,  Molecular  Mechanisms  and
               Medicine. J Biomed Mater Res Part A, 102:1982–90.   Clinical Applications of Angiogenesis. Nature, 473:298–307.
               https://doi.org/1002/jbm.a.34873                    https://doi.org/1038/nature10144

           174                         International Journal of Bioprinting (2022)–Volume 8, Issue 3
   177   178   179   180   181   182   183   184   185   186   187