Page 181 - IJB-8-3
P. 181

Ma, et al.
           19.  Khraisheh MA, Al-degs YS, McMinn WA, 2004, Remediation   30.  Schuurman  W,  Levett  PA,  Pot  MW, et  al.,  2013,  Gelatin-
               of  Wastewater  Containing  Heavy  Metals  Using  Raw  and   Methacrylamide  Hydrogels  as  Potential  Biomaterials  for
               Modified Diatomite. Chem Eng J, 99:177–84.          Fabrication  of  Tissue-Engineered  Cartilage  Constructs.
               https://doi.org/1016/j.cej.2003.11.029              Macromol Biosci, 13:551–61.
           20.  Tamburaci S, Tihminlioglu F, 2018, Biosilica Incorporated 3D      https://doi.org/1002/mabi.201200471
               Porous Scaffolds for Bone Tissue Engineering Applications.   31.  Cross  LM,  Shah  K,  Palani  S, et al.,  2018,  Gradient
               Mater Sci Eng C Mater Biol Appl, 91:274–91.         Nanocomposite Hydrogels for Interface Tissue Engineering.
               https://doi.org/1016/j.msec.2018.05.040             Nanomed Nanotechnol Biol Med, 14:2465–74.
           21.  Tamburaci  S,  Tihminlioglu  F,  2017,  Diatomite  Reinforced      https://doi.org/1016/j.nano.2017.02.022
               Chitosan  Composite  Membrane  as  Potential  Scaffold  for   32.  Wang  N,  Ma  M,  Luo  Y, et al.,  2018,  Mesoporous  Silica
               Guided Bone Regeneration. Mater Sci Eng: C, 80:222–31.  Nanoparticles-Reinforced  Hydrogel  Scaffold  together
               https://doi.org/1016/j.msec.2017.05.069             with  Pinacidil  Loading  to  Improve  Stem  Cell  Adhesion.
           22.  Le TD, Liaudanskaya V, Bonani W, et al., 2018, Enhancing   ChemNanoMat, 4:631–41.
               Bioactive Properties of Silk Fibroin with Diatom Particles for      https://doi.org/1002/cnma.201800026
               Bone Tissue Engineering Applications. J Tissue Eng Regen   33.  Spencer  AR,  Primbetova  A,  Koppes  AN, et  al.,  2018,
               Med, 12:89–97.                                      Electroconductive  Gelatin  Methacryloyl-PEDOT:  PSS
               https://doi.org/1002/term.2373                      Composite  Hydrogels:  Design,  Synthesis,  and  Properties.
           23.  Maher S, Alsawat M, Kumeria T, et al., 2015, Luminescent   ACS Biomater Sci Eng, 4:1558–67.
               Silicon  Diatom  Replicas:  Self-Reporting  and  Degradable      https://doi.org/1021/acsbiomaterials.8b00135
               Drug Carriers with Biologically Derived Shape for Sustained   34.  Kaemmerer  E,  Melchels  FP,  Holzapfel  BM, et al.,  2014,
               Delivery of Therapeutics. Adv Funct Mater, 25:5107–16.  Gelatine  Methacrylamide-based  Hydrogels: An Alternative
               https://doi.org/1002/adfm.201501249                 Three-dimensional  Cancer  Cell  Culture  System.  Acta
           24.  Lv J, Sun B, Jin J, et al., 2019, Mechanical and Slow-released   Biomater, 10:2551–62.
               Property  of  Poly(Acrylamide)  Hydrogel  Reinforced  by      https://doi.org/1016/j.actbio.2014.02.035
               Diatomite. Mater Sci Eng C, 99:315–21.          35.  Zhang  Y,  Sun  M,  Liu  T, et  al.,  2021,  Effect  of  Different
               https://doi.org/1016/j.msec.2019.01.109             Additives  on  the  Mechanical  Properties  of  Gelatin
           25.  Feng C, Li J, Wu GS, et al., 2016, Chitosan-Coated Diatom   Methacryloyl  Hydrogel:  A  Meta-analysis.  ACS Omega,
               Silica  as  Hemostatic Agent  for  Hemorrhage  Control.  ACS   6:9112–28.
               Appl Mater Interfaces, 8:34234–43.                  https://doi.org/1021/acsomega.1c00244
               https://doi.org/1021/acsami.6b12317             36.  Di Carmine M, Toto P, Feliciani C, et al., 2003, Spreading
           26.  Le TD, Bonani W, Speranza G, et al., 2016, Processing and   of Epithelial Cells on Machined and Sandblasted Titanium
               Characterization of Diatom Nanoparticles and Microparticles   Surfaces: An In Vitro Study. J Periodontol, 74:289–95.
               as Potential Source of Silicon for Bone Tissue Engineering.      https://doi.org/1902/jop.2003.74.3.289
               Mater Sci Eng C, 59:471–9.                      37.  Bacakova L, Filova E, Parizek M, et al., 2011, Modulation of
               https://doi.org/1016/j.msec.2015.  https://doi.org/040  Cell Adhesion, Proliferation and Differentiation on Materials
           27.  Zhang YX, Huang M, Li F, et al., 2014, One-pot Synthesis of   Designed for Body Implants. Biotechnol Adv, 29:739–67.
               Hierarchical MnO -modified Diatomites for Electrochemical      https://doi.org/1016/j.biotechadv.2011.06.004
                            2
               Capacitor Electrodes. J Power Sources, 246:449–56.  38.  Yao  X,  Peng  R,  Ding  J,  2013,  Cell-Material  Interactions
               https://doi.org/1016/j.jpowsour.2013.07.115         Revealed Via Material Techniques of Surface Patterning. Adv
           28.  Gencel O, del Coz Diaz JJ, Sutcu M, et al., 2016, A Novel   Mater, 25:5257–86.
               Lightweight  Gypsum  Composite  with  Diatomite  and      https://doi.org/1002/adma.201301762
               Polypropylene Fibers. Constr Build Mater, 113:732–40.  39.  Martin  P,  1997,  Wound  Healing--Aiming  for  Perfect  Skin
               https://doi.org/1016/j.conbuildmat.2016.03.125      Regeneration. Science, 276:75.
           29.  Ying GL, Jiang N, Maharjan S, et al., 2018, Aqueous Two-     https://doi.org/1126/science.276.5309.75
               Phase  Emulsion  Bioink-Enabled  3D  Bioprinting  of  Porous   40.  Saghiri MA, Asatourian A, Orangi J, et al., 2015, Functional
               Hydrogels. Adv Mater, 30:1805460.                   Role of Inorganic Trace Elements in Angiogenesis Part II: Cr,
               https://doi.org/1002/adma.201805460                 Si, Zn, Cu, and S. Crit Rev Oncol Hematol, 96:143–55.

                                       International Journal of Bioprinting (2022)–Volume 8, Issue 3       173
   176   177   178   179   180   181   182   183   184   185   186