Page 21 - IJB-8-3
P. 21

Liu, et al.
           References                                              Inspired  Human  In Vitro  Outer  Retinal  Models:  Bruch’s
                                                                   Membrane  and  Its  Cellular  Interactions.  Acta  Biomater,
           1.   Wong WL, Su X, Li X, et al., 2014, Global Prevalence of   104:1–16.
               Age-Related  Macular  Degeneration  and  Disease  Burden      http://doi.org/10.1016/j.actbio.2020.01.013
               Projection  for  2020  and  2040:  A  Systematic  Review  and   11.  Klingeborn  M,  Dismuke  WM,  Skiba  NP, et  al.,  2017,
               Meta-Analysis. Lancet Glob Health, 2:e106–16.       Directional  Exosome  Proteomes  Reflect  Polarity-Specific
               http://doi.org/10.1016/S2214-109X(13)70145-1        Functions in Retinal Pigmented Epithelium Monolayers. Sci
           2.   Bagewadi S, Parameswaran S, Subramanian K, et al., 2021,   Rep, 7:4901.
               Tissue Engineering Approaches Towards the Regeneration of      http://doi.org/10.1038/s41598-017-05102-9
               Biomimetic Scaffolds for Age-Related Macular Degeneration.   12.  Apel  P,  2001,  Track  Etching  Technique  in  Membrane
               J Mater Chem B, 9:5935–53.                          Technology. Radiat Meas, 34:559–66.
               http://doi.org/10.1039/D1TB00976A                   https://doi.org/10.1016/S1350-4487(01)00228-1
           3.   Liu Z, Yu N, Holz FG, et al., 2014, Enhancement of Retinal   13.  Kim  MY,  Li  DJ,  Pham  LK, et  al.,  2014,  Microfabrication
               Pigment  Epithelial  Culture  Characteristics  and  Subretinal   of  High-Resolution  Porous  Membranes  for  Cell  Culture.
               Space Tolerance of Scaffolds with 200 nm Fiber Topography.   J Memb Sci, 452:460–9.
               Biomaterials, 35:2837–50.                           https://doi.org/10.1016/j.memsci.2013.11.034
               http://doi.org/10.1016/j.biomaterials.2013.12.069  14.  Liu Z, Parikh BH, Tan QS, et al., 2021, Surgical Transplantation
           4.   Sharma  R,  Khristov  V,  Rising  A, et  al.,  2019,  Clinical-  of  Human  RPE  Stem  Cell-Derived  RPE  Monolayers  into
               Grade Stem Cell-Derived Retinal Pigment Epithelium Patch   Non-Human  Primates  with  Immunosuppression.  Stem  Cell
               Rescues Retinal Degeneration in Rodents and Pigs. Sci Transl   Rep, 16:237–51.
               Med, 11:eaat5580.                                   http://doi.org/10.1016/j.stemcr.2020.12.007
               http://doi.org/10.1126/scitranslmed.aat5580     15.  Liu H, Jing L, Sun J, et al., 2021, An Overview of Scaffolds
           5.   Hunt  N  C,  Hallam  D,  Chichagova  V, et  al.,  2018,  The   for  Retinal  Pigment  Epithelium  Research.  Proc Manuf,
               Application  of  Biomaterials  to  Tissue  Engineering  Neural   53:492–9.
               Retina and Retinal Pigment Epithelium. Adv Healthc Mater,      http://doi.org/10.1016/j.promfg.2021.06.051
               7:1800226.                                      16.  Liu  H,  Vijayavenkataraman  S,  Wang  D, et  al.,  2017,
               http://doi.org/10.1002/adhm.201800226               Influence of Electrohydrodynamic Jetting Parameters on the
           6.   Harris  TI,  Paterson  CA,  Farjood  F, et  al.,  2019,  Utilizing   Morphology of PCL Scaffolds. Int J Bioprint, 3:009.
               Recombinant  Spider  Silk  Proteins  to  Develop  a  Synthetic      http://doi.org/10.18063/IJB.2017.01.009
               Bruch’s  Membrane  for  Modeling  the  Retinal  Pigment   17.  Jing  L,  Sun  M,  Xu  P, et  al.,  2021,  Noninvasive  In Vivo
               Epithelium.  ACS  Biomater  Sci  Eng,  5:4023-36.  http://doi.  Imaging  and  Monitoring  of  3D-Printed  Polycaprolactone
               org/10.1021/acsbiomaterials.9b00183                 Scaffolds Labeled with an NIR Region II Fluorescent Dye.
           7.   Tan EY, Agarwala S, Yap YL, et al., 2017, Novel Method   ACS Appl Bio Mater, 4:3189–202.
               for  the  Fabrication  of  Ultrathin,  Free-Standing  and  Porous      http://doi.org/10.1021/acsabm.0c01587
               Polymer Membranes for Retinal Tissue Engineering. J Mater   18.  He  J,  Zhang  B,  Li  Z, et  al.,  2020,  High-Resolution
               Chem B, 5:5616–22.                                  Electrohydrodynamic  Bioprinting:  A  New  Biofabrication
               http://doi.org/10.1039/C7TB00376E                   Strategy for Biomimetic Micro/Nanoscale Architectures and
           8.   Chan  SY,  Chan  BQ,  Liu  Z, et  al.,  2017,  Electrospun   Living Tissue Constructs. Biofabrication, 12:042002.
               Pectin-Polyhydroxybutyrate  Nanofibers  for  Retinal  Tissue      http://doi.org/10.1088/1758-5090/aba1fa
               Engineering. ACS Omega, 2:8959–68.              19.  Onses MS, Sutanto E, Ferreira P M, et al., 2015, Mechanisms,
               http://doi.org/10.1021/acsomega.7b01604             Capabilities,   and   Applications   of   High-Resolution
           9.   Krishna  L,  Nilawar  S,  Ponnalagu  M, et  al.,  2020,  Fiber   Electrohydrodynamic Jet Printing. Small, 11:4237–66.
               Diameter  Differentially  Regulates  Function  of  Retinal      http://doi.org/10.1002/smll.201500593
               Pigment and Corneal Epithelial Cells on Nanofibrous Tissue   20.  Wu B, Takeshita N, Wu Y, et al., 2018, Pluronic F127 Blended
               Scaffolds. ACS Appl Bio Mater, 3:823–37.            Polycaprolactone  Scaffolds  Via  E-Jetting  for  Esophageal
               http://doi.org/10.1021/acsabm.9b00897               Tissue Engineering. J Mater Sci Mater Med, 29:140.
           10.  Murphy AR,  Truong  YB,  O’Brien  CM,  et  al.,  2020,  Bio-     http://doi.org/10.1007/s10856-018-6148-z

           13                          International Journal of Bioprinting (2022)–Volume 8, Issue 3
   16   17   18   19   20   21   22   23   24   25   26