Page 37 - IJB-8-3
P. 37

Liang, et al.
           80.  Chen  P,  Zheng  L,  Wang  Y,  et  al.,  2019,  Desktop-     https://doi.org/10.1002/mabi.201100508
               stereolithography  3D  Printing  of  a  Radially  Oriented   90.  Zhang  W,  Lian  Q,  Li  D, et  al.,  2014,  Cartilage  Repair
               Extracellular  Matrix/Mesenchymal  Stem  Cell  Exosome   and  Subchondral  Bone  Migration  Using  3D  Printing
               Bioink for Osteochondral Defect Regeneration. Theranostics,   Osteochondral  Composites:  A  One-year-period  Study  in
               9:2439–59.                                          Rabbit Trochlea. Biomed Res Int, 2014:746138.
               https://doi.org/10.7150/thno.31017                  https://doi.org/10.1155/2014/746138
           81.  Lam T, Dehne T, Krüger JP, et al., 2019, Photopolymerizable   91.  Treccani L, Klein TY, Meder F, et al., 2013, Functionalized
               Gelatin  and  Hyaluronic  Acid  for  Stereolithographic  3D   Ceramics for Biomedical, Biotechnological and Environmental
               Bioprinting of Tissue-engineered Cartilage. J Biomed Mater   Applications. Acta Biomater, 9:7115–50.
               Res B Appl Biomater, 107:2649–57.                   https://doi.org/10.1016/j.actbio.2013.03.036
               https://doi.org/10.1002/jbm.b.34354             92.  Gao  G,  Schilling  AF,  Hubbell  K, et al.,  2015,  Improved
           82.  Luo  C,  Xie  R,  Zhang  J,  et  al.,  2020,  Low-Temperature   Properties  of  Bone  and  Cartilage  Tissue  from  3D  Inkjet-
               Three-Dimensional Printing of Tissue Cartilage Engineered   bioprinted Human Mesenchymal Stem Cells by Simultaneous
               with Gelatin Methacrylamide. Tissue Eng Part C Methods,   Deposition   and   Photocrosslinking   in   PEG-GelMA.
               26:306–16.                                          Biotechnol Lett, 37:2349–55.
               https://doi.org/10.1089/ten.TEC.2020.0053           https://doi.org/10.1007/s10529-015-1921-2
           83.  Irmak  G,  Gümüşderelioğlu  M,  2020,  Photo-activated   93.  Qiao  Z,  Lian  M,  Han  Y, et al.,  2021,  Bioinspired
               Platelet-rich Plasma (PRP)-based Patient-specific Bio-ink for   Stratified  Electrowritten  Fiber-reinforced  Hydrogel
               Cartilage Tissue Engineering. Biomed Mater, 15:0650.  Constructs  with  Layer-specific  Induction  Capacity  for
               https://doi.org/10.1088/1748-605X/ab9e46            Functional  Osteochondral  Regeneration.  Biomaterials,
           84.  Chin  SY,  Poh  YC,  Kohler  AC, et  al.,  2018,  An  Additive   266:120385.
               Manufacturing Technique for the Facile and Rapid Fabrication      https://doi.org/10.1016/j.biomaterials.2020.120385
               of  Hydrogel-based  Micromachines  with  Magnetically   94.  Kade JC, Dalton PD, 2021, Polymers for Melt Electrowriting.
               Responsive Components. J Vis Exp, 137:56727.        Adv Healthc Mater, 10:e2001232.
               https://doi.org/10.3791/56727                       https://doi.org/10.1002/adhm.202001232
           85.  Arcaute K, Mann B, Wicker R, 2010, Stereolithography of   95.  Jiang S, Guo W, Tian G, et al., 2020, Clinical Application
               Spatially Controlled Multi-material Bioactive Poly(Ethylene   Status  of  Articular  Cartilage  Regeneration  Techniques:
               Glycol) Scaffolds. Acta Biomater, 6:1047–54.        Tissue-Engineered Cartilage Brings New Hope. Stem Cells
               https://doi.org/10.1016/j.actbio.2009.08.017        Int, 2020:5690252.
           86.  Bryant SJ, Anseth KS, 2002, Hydrogel Properties Influence      https://doi.org/10.1155/2020/5690252
               ECM  Production  by  Chondrocytes  Photoencapsulated  in   96.  Shive  MS,  Hoemann  CD,  Restrepo  A, et al.,  2006,  BST-
               Poly(Ethylene  Glycol)  Hydrogels.  J  Biomed  Mater  Res,   CarGel: In Situ ChondroInduction for Cartilage Repair. Oper
               59:63–72.                                           Techn Orthop, 16:271–8.
               https://doi.org/10.1002/jbm.1217                    https://doi.org/10.1053/j.oto.2006.08.001
           87.  Sharma  B,  Fermanian  S,  Gibson  M, et al.,  2013,  Human   97.  Sahana TG, Rekha PD, 2018, Biopolymers: Applications in
               Cartilage  Repair  with  a  Photoreactive  Adhesive-hydrogel   Wound Healing and Skin Tissue Engineering. Mol Biol Rep,
               Composite. Sci Transl Med, 5:167ra166.              45:2857–67.
               https://doi.org/10.1126/scitranslmed.3004838        https://doi.org/10.1007/s11033-018-4296-3
           88.  Gaharwar  AK,  Dammu  SA,  Canter  JM,  et al.,  2011,   98.  Daly  AC,  Critchley  SE,  Rencsok  EM, et al.,  2016,  A
               Highly Extensible, Tough, and Elastomeric Nanocomposite   Comparison  of  Different  Bioinks  for  3D  Bioprinting  of
               Hydrogels from Poly(Ethylene Glycol) and Hydroxyapatite   Fibrocartilage  and  Hyaline  Cartilage.  Biofabrication,
               Nanoparticles. Biomacromolecules, 12:1641–50.       8:045002.
               https://doi.org/10.1021/bm200027z                   https://doi.org/10.1088/1758-5090/8/4/045002
           89.  Gaharwar AK,  Kishore  V,  Rivera  C, et al.,  2012,  Physically   99.  Dhand  AP,  Galarraga  JH,  Burdick  JA,  2021,  Enhancing
               Crosslinked  Nanocomposites  from  Silicate-crosslinked  PEO:   Biopolymer Hydrogel Functionality through Interpenetrating
               Mechanical Properties and Osteogenic Differentiation of Human   Networks. Trends Biotechnol, 39:519–38.
               Mesenchymal Stem Cells. Macromol Biosci, 12:779–93.     https://doi.org/10.1016/j.tibtech.2020.08.007

                                       International Journal of Bioprinting (2022)–Volume 8, Issue 3        29
   32   33   34   35   36   37   38   39   40   41   42