Page 37 - IJB-8-3
P. 37
Liang, et al.
80. Chen P, Zheng L, Wang Y, et al., 2019, Desktop- https://doi.org/10.1002/mabi.201100508
stereolithography 3D Printing of a Radially Oriented 90. Zhang W, Lian Q, Li D, et al., 2014, Cartilage Repair
Extracellular Matrix/Mesenchymal Stem Cell Exosome and Subchondral Bone Migration Using 3D Printing
Bioink for Osteochondral Defect Regeneration. Theranostics, Osteochondral Composites: A One-year-period Study in
9:2439–59. Rabbit Trochlea. Biomed Res Int, 2014:746138.
https://doi.org/10.7150/thno.31017 https://doi.org/10.1155/2014/746138
81. Lam T, Dehne T, Krüger JP, et al., 2019, Photopolymerizable 91. Treccani L, Klein TY, Meder F, et al., 2013, Functionalized
Gelatin and Hyaluronic Acid for Stereolithographic 3D Ceramics for Biomedical, Biotechnological and Environmental
Bioprinting of Tissue-engineered Cartilage. J Biomed Mater Applications. Acta Biomater, 9:7115–50.
Res B Appl Biomater, 107:2649–57. https://doi.org/10.1016/j.actbio.2013.03.036
https://doi.org/10.1002/jbm.b.34354 92. Gao G, Schilling AF, Hubbell K, et al., 2015, Improved
82. Luo C, Xie R, Zhang J, et al., 2020, Low-Temperature Properties of Bone and Cartilage Tissue from 3D Inkjet-
Three-Dimensional Printing of Tissue Cartilage Engineered bioprinted Human Mesenchymal Stem Cells by Simultaneous
with Gelatin Methacrylamide. Tissue Eng Part C Methods, Deposition and Photocrosslinking in PEG-GelMA.
26:306–16. Biotechnol Lett, 37:2349–55.
https://doi.org/10.1089/ten.TEC.2020.0053 https://doi.org/10.1007/s10529-015-1921-2
83. Irmak G, Gümüşderelioğlu M, 2020, Photo-activated 93. Qiao Z, Lian M, Han Y, et al., 2021, Bioinspired
Platelet-rich Plasma (PRP)-based Patient-specific Bio-ink for Stratified Electrowritten Fiber-reinforced Hydrogel
Cartilage Tissue Engineering. Biomed Mater, 15:0650. Constructs with Layer-specific Induction Capacity for
https://doi.org/10.1088/1748-605X/ab9e46 Functional Osteochondral Regeneration. Biomaterials,
84. Chin SY, Poh YC, Kohler AC, et al., 2018, An Additive 266:120385.
Manufacturing Technique for the Facile and Rapid Fabrication https://doi.org/10.1016/j.biomaterials.2020.120385
of Hydrogel-based Micromachines with Magnetically 94. Kade JC, Dalton PD, 2021, Polymers for Melt Electrowriting.
Responsive Components. J Vis Exp, 137:56727. Adv Healthc Mater, 10:e2001232.
https://doi.org/10.3791/56727 https://doi.org/10.1002/adhm.202001232
85. Arcaute K, Mann B, Wicker R, 2010, Stereolithography of 95. Jiang S, Guo W, Tian G, et al., 2020, Clinical Application
Spatially Controlled Multi-material Bioactive Poly(Ethylene Status of Articular Cartilage Regeneration Techniques:
Glycol) Scaffolds. Acta Biomater, 6:1047–54. Tissue-Engineered Cartilage Brings New Hope. Stem Cells
https://doi.org/10.1016/j.actbio.2009.08.017 Int, 2020:5690252.
86. Bryant SJ, Anseth KS, 2002, Hydrogel Properties Influence https://doi.org/10.1155/2020/5690252
ECM Production by Chondrocytes Photoencapsulated in 96. Shive MS, Hoemann CD, Restrepo A, et al., 2006, BST-
Poly(Ethylene Glycol) Hydrogels. J Biomed Mater Res, CarGel: In Situ ChondroInduction for Cartilage Repair. Oper
59:63–72. Techn Orthop, 16:271–8.
https://doi.org/10.1002/jbm.1217 https://doi.org/10.1053/j.oto.2006.08.001
87. Sharma B, Fermanian S, Gibson M, et al., 2013, Human 97. Sahana TG, Rekha PD, 2018, Biopolymers: Applications in
Cartilage Repair with a Photoreactive Adhesive-hydrogel Wound Healing and Skin Tissue Engineering. Mol Biol Rep,
Composite. Sci Transl Med, 5:167ra166. 45:2857–67.
https://doi.org/10.1126/scitranslmed.3004838 https://doi.org/10.1007/s11033-018-4296-3
88. Gaharwar AK, Dammu SA, Canter JM, et al., 2011, 98. Daly AC, Critchley SE, Rencsok EM, et al., 2016, A
Highly Extensible, Tough, and Elastomeric Nanocomposite Comparison of Different Bioinks for 3D Bioprinting of
Hydrogels from Poly(Ethylene Glycol) and Hydroxyapatite Fibrocartilage and Hyaline Cartilage. Biofabrication,
Nanoparticles. Biomacromolecules, 12:1641–50. 8:045002.
https://doi.org/10.1021/bm200027z https://doi.org/10.1088/1758-5090/8/4/045002
89. Gaharwar AK, Kishore V, Rivera C, et al., 2012, Physically 99. Dhand AP, Galarraga JH, Burdick JA, 2021, Enhancing
Crosslinked Nanocomposites from Silicate-crosslinked PEO: Biopolymer Hydrogel Functionality through Interpenetrating
Mechanical Properties and Osteogenic Differentiation of Human Networks. Trends Biotechnol, 39:519–38.
Mesenchymal Stem Cells. Macromol Biosci, 12:779–93. https://doi.org/10.1016/j.tibtech.2020.08.007
International Journal of Bioprinting (2022)–Volume 8, Issue 3 29

