Page 36 - IJB-8-3
P. 36

Hydrogel based 3D-printing Bioinks for Cartilage Repair
           59.  Adamiak  K,  Sionkowska  A,  2020,  Current  Methods  of   69.  Singh  YP,  Bandyopadhyay  A,  Mandal  BB,  2019,  3D
               Collagen  Cross-linking:  Review.  Int  J  Biol  Macromol,   Bioprinting Using Cross-Linker-Free Silk-Gelatin Bioink for
               161:550–60.                                         Cartilage  Tissue  Engineering.  ACS  Appl Mater Interfaces,
               https://doi.org/10.1016/j.ijbiomac.2020.06.075      11:33684–96.
           60.  Lee H, Yang GH, Kim M, et al., 2018, Fabrication of Micro/     https://doi.org/10.1021/acsami.9b11644
               Nanoporous   Collagen/dECM/Silk-fibroin   Biocomposite   70.  Vepari  C,  Kaplan  DL,  2007,  Silk  as  a  Biomaterial.  Prog
               Scaffolds Using a Low Temperature 3D Printing Process for   Polym Sci, 32:991–1007.
               Bone Tissue Regeneration. Mater Sci Eng C Mater Biol Appl,      https://doi.org/10.1016/j.progpolymsci.2007.05.013
               84:140–7.                                       71.  Shi  W,  Sun  M,  Hu  X, et  al.,  2017,  Structurally  and
               https://doi.org/10.1016/j.msec.2017.11.013          Functionally Optimized Silk-Fibroin-Gelatin Scaffold Using
           61.  Shim JH, Jang KM, Hahn SK, et al., 2016, Three-dimensional   3D Printing to Repair Cartilage Injury In Vitro and In Vivo.
               Bioprinting  of  Multilayered  Constructs  Containing  Human   Adv Mater, 29:1701089.
               Mesenchymal  Stromal  Cells  for  Osteochondral  Tissue      https://doi.org/10.1002/adma.201701089
               Regeneration  in  the  Rabbit  Knee  Joint.  Biofabrication,   72.  Kim SH, Yeon YK, Lee JM, et al., 2018, Precisely Printable
               8:014102.                                           and  Biocompatible  Silk  Fibroin  Bioink  for  Digital  Light
               https://doi.org/10.1088/1758-5090/8/1/014102        Processing 3D Printing. Nat Commun, 9:1620.
           62.  Stratesteffen H, Köpf M, Kreimendahl F, et al., 2017, GelMA-     https://doi.org/10.1038/s41467-018-03759-y
               collagen  Blends  Enable  Drop-on-demand  3D  Printablility   73.  Yue K, Trujillo-de Santiago G, Alvarez MM, et al., 2015,
               and Promote Angiogenesis. Biofabrication, 9:045002.  Synthesis,  Properties,  and  Biomedical  Applications  of
               https://doi.org/10.1088/1758-5090/aa857c            Gelatin  Methacryloyl  (GelMA)  Hydrogels.  Biomaterials,
           63.  Lee J, Yeo M, Kim W, et al., 2018, Development of a Tannic   73:254–71.
               Acid Cross-linking Process for Obtaining 3D Porous Cell-     https://doi.org/10.1016/j.biomaterials.2015.08.045
               laden Collagen Structure. Int J Biol Macromol, 110:497–503.  74.  Chen YC,  Lin  RZ,  Qi  H, et  al.,  2012,  Functional  Human
               https://doi.org/10.1016/j.ijbiomac.2017             Vascular  Network  Generated  in  Photocrosslinkable  Gelatin
           64.  Wang  C,  Yue  H,  Huang  W, et al.,  2020,  Cryogenic  3D   Methacrylate Hydrogels. Adv Funct Mater, 22:2027–39.
               Printing  of  Heterogeneous  Scaffolds  with  Gradient      https://doi.org/10.1002/adfm.201101662
               Mechanical  Strengths  and  Spatial  Delivery  of  Osteogenic   75.  Koshy ST, Ferrante TC, Lewin SA, et al., 2014, Injectable,
               Peptide/TGF-β1  for  Osteochondral  Tissue  Regeneration.   Porous, and Cell-responsive Gelatin Cryogels. Biomaterials,
               Biofabrication, 12:025030.                          35:2477–87.
               https://doi.org/10.1088/1758-5090/ab7ab5            https://doi.org/10.1016/j.biomaterials.2013.11.044
           65.  Tong X, Pan W, Su T, et al., 2020, Recent Advances in Natural   76.  Wei D, Xiao W, Sun J, et al., 2015, A Biocompatible Hydrogel
               Polymer-based Drug Delivery Systems. React Funct Polym,   with  Improved  Stiffness  and  Hydrophilicity  for  Modular
               148:104501.                                         Tissue Engineering Assembly. J Mater Chem B, 3:2753–63.
               https://doi.org/10.1016/j.reactfunctpolym.2020.104501     https://doi.org/10.1039/c5tb00129c
           66.  Catoira  MC,  Fusaro  L,  Di  Francesco  D, et  al.,  2019,   77.  Liu Y, Chan-Park MB, 2010, A Biomimetic Hydrogel Based
               Overview of Natural Hydrogels for Regenerative Medicine   on  Methacrylated  Dextran-graft-lysine  and  Gelatin  for  3D
               Applications. J Mater Sci Mater Med, 30:115.        Smooth Muscle Cell Culture. Biomaterials, 31:1158–70.
               https://doi.org/10.1007/s10856-019-6318-7           https://doi.org/10.1016/j.biomaterials.2009
           67.  Kim HJ, Kim MK, Lee KH, et al., 2017, Effect of Degumming   78.  Wang Y, Ma M, Wang J, et al., 2018, Development of a Photo-
               Methods  on  Structural  Characteristics  and  Properties  of   Crosslinking,  Biodegradable  GelMA/PEGDA  Hydrogel  for
               Regenerated Silk. Int J Biol Macromol, 104:294–302.  Guided  Bone  Regeneration  Materials.  Materials  (Basel),
               https://doi.org/10.1016/j.ijbiomac.2017.06.019      11:1345.
           68.  Rasheed T,  Bilal  M,  Zhao Y, et al.,  2019,  Physiochemical      https://doi.org/10.3390/ma11081345
               Characteristics  and  Bone/Cartilage  Tissue  Engineering   79.  Mobasheri A, Rayman MP, Gualillo O, et al., 2017, The Role
               Potentialities of Protein-based Macromolecules a Review. Int   of Metabolism in the Pathogenesis of Osteoarthritis. Nat Rev
               J Biol Macromol, 121:13–22.                         Rheumatol, 13:302–11.
               https://doi.org/10.1016/j.ijbiomac.2018             https://doi.org/10.1038/nrrheum.2017.50

           28                          International Journal of Bioprinting (2022)–Volume 8, Issue 3
   31   32   33   34   35   36   37   38   39   40   41