Page 34 - IJB-8-3
P. 34
Hydrogel based 3D-printing Bioinks for Cartilage Repair
15. Hsu EL, Stock SR, 2020, Growth Factors, Carrier Materials, Chun HJ, Reis RL, Motta A, Khang G. editors. Bioinspired
and Bone Repair. Handb Exp Pharmacol, 262:121–56. Biomaterials: Advances in Tissue Engineering and
https://doi.org/10.1007/164_2020_371 Regenerative Medicine. Singapore: Springer. p53-66.
16. Chen L, Liu J, Guan M, et al., 2020, Growth Factor and 28. Antich C, de Vicente J, Jiménez G, et al., 2020, Bio-inspired
Its Polymer Scaffold-Based Delivery System for Cartilage Hydrogel Composed of Hyaluronic Acid and Alginate as a
Tissue Engineering. Int J Nanomedicine, 15:6097–111. Potential Bioink for 3D Bioprinting of Articular Cartilage
https://doi.org/10.2147/ijn.S249829 Engineering Constructs. Acta Biomater, 106:114–23.
17. Shirahama H, Lee BH, Tan LP, et al., 2016, Precise Tuning of https://doi.org/10.1016/j.actbio.2020.01.046
Facile One-Pot Gelatin Methacryloyl (GelMA) Synthesis. Sci 29. Fraser JR, Laurent TC, Laurent UB, 1997, Hyaluronan: Its
Rep, 6:31036. Nature, Distribution, Functions and Turnover. J Intern Med,
https://doi.org/10.1038/srep31036 242:27–33.
18. Chimene D, Kaunas R, Gaharwar AK, 2020, Hydrogel Bioink https://doi.org/10.1046/j.1365-2796.1997.00170.x
Reinforcement for Additive Manufacturing: A Focused 30. Evanko SP, Angello JC, Wight TN, 1999, Formation of
Review of Emerging Strategies. Adv Mater, 32:e1902026. Hyaluronan and Versican-rich Pericellular Matrix is Required
https://doi.org/10.1002/adma.201902026 for Proliferation and Migration of Vascular Smooth Muscle
19. Bertlein S, Brown G, Lim KS, et al., 2017, Thiol-Ene Cells. Arterioscler Thromb Vasc Biol, 19:1004–13.
Clickable Gelatin: A Platform Bioink for Multiple 3D https://doi.org/10.1161/01.atv.19.4.1004
Biofabrication Technologies. Adv Mater, 29:44. 31. Abatangelo G, Vindigni V, Avruscio G, et al., 2020,
https://doi.org/10.1002/adma.201703404 Hyaluronic Acid: Redefining its Role. Cells, 9:1743.
20. Liao J, Qu Y, Chu B, et al., 2015, Biodegradable CSMA/ https://doi.org/10.3390/cells9071743
PECA/Graphene Porous Hybrid Scaffold for Cartilage Tissue 32. Burdick JA, Prestwich GD, 2011, Hyaluronic Acid Hydrogels
Engineering. Sci Rep, 5:9879. for Biomedical Applications. Adv Mater, 23:H41–56.
https://doi.org/10.1038/srep09879 https://doi.org/10.1002/adma.201003963
21. Cui X, Li J, Hartanto Y, et al., 2020, Advances in Extrusion 33. Shu XZ, Ahmad S, Liu Y, et al., 2006, Synthesis and
3D Bioprinting: A Focus on Multicomponent Hydrogel- Evaluation of Injectable, In Situ Crosslinkable Synthetic
Based Bioinks. Adv Healthc Mater, 9:e1901648. Extracellular Matrices for Tissue Engineering. J Biomed
https://doi.org/10.1002/adhm.201901648 Mater Res A, 79:902–12.
22. Zhang YS, Haghiashtiani G, Hübscher T, et al., 2021, 3D https://doi.org/10.1002/jbm.a.30831
Extrusion Bioprinting. Nat Rev Methods Prim, 1:75. 34. Vanderhooft JL, Mann BK, Prestwich GD, 2007, Synthesis
https://doi.org/10.1038/s43586-021-00073-8 and Characterization of Novel Thiol-reactive Poly(Ethylene
23. Daly AC, Freeman FE, Gonzalez-Fernandez T, et al., 2017, Glycol) Cross-linkers for Extracellular-matrix-mimetic
3D Bioprinting for Cartilage and Osteochondral Tissue Biomaterials. Biomacromolecules, 8:2883–9.
Engineering. Adv Healthc Mater, 6:22. https://doi.org/10.1021/bm0703564
https://doi.org/10.1002/adhm.201700298 35. Serban MA, Prestwich GD, 2007, Synthesis of Hyaluronan
24. Willson K, Atala A, Yoo JJ, 2021, Bioprinting Au Natural: Haloacetates and Biology of Novel Cross-linker-free Synthetic
The Biologics of Bioinks. Biomolecules, 11:1593. Extracellular Matrix Hydrogels. Biomacromolecules,
https://doi.org/10.3390/biom11111593 8:2821–8.
25. Zhang J, Hu Q, Wang S, et al., 2020, Digital Light Processing https://doi.org/10.1021/bm700595s
Based Three-dimensional Printing for Medical Applications. 36. Pouyani T, Prestwich GD, 1994, Functionalized Derivatives
Int J Bioprint, 6:242. of Hyaluronic Acid Oligosaccharides: Drug Carriers and
https://doi.org/10.18063/ijb.v6i1.242 Novel Biomaterials. Bioconjug Chem, 5:339–47.
26. Petta D, D’Amora U, Ambrosio L, et al., 2020, Hyaluronic https://doi.org/10.1021/bc00028a010
Acid as a Bioink for Extrusion-based 3D Printing. 37. Darr A, Calabro A, 2009, Synthesis and Characterization of
Biofabrication, 12:032001. Tyramine-based Hyaluronan Hydrogels. J Mater Sci Mater
https://doi.org/10.1088/1758-5090/ab8752 Med, 20:33–44.
27. Kim SH, Kim DY, Lim TH, et al., 2020, Silk Fibroin Bioinks https://doi.org/10.1007/s10856-008-3540-0
for Digital Light Processing (DLP) 3D Bioprinting. In: 38. Ozbolat IT, Hospodiuk M, 2016, Current Advances and Future
26 International Journal of Bioprinting (2022)–Volume 8, Issue 3

