Page 34 - IJB-8-3
P. 34

Hydrogel based 3D-printing Bioinks for Cartilage Repair
           15.  Hsu EL, Stock SR, 2020, Growth Factors, Carrier Materials,   Chun HJ, Reis RL, Motta A, Khang G. editors. Bioinspired
               and Bone Repair. Handb Exp Pharmacol, 262:121–56.   Biomaterials:  Advances  in  Tissue  Engineering  and
               https://doi.org/10.1007/164_2020_371                Regenerative Medicine. Singapore: Springer. p53-66.
           16.  Chen  L,  Liu  J,  Guan  M, et  al.,  2020,  Growth  Factor  and   28.  Antich C, de Vicente J, Jiménez G, et al., 2020, Bio-inspired
               Its  Polymer  Scaffold-Based  Delivery  System  for  Cartilage   Hydrogel Composed of Hyaluronic Acid and Alginate as a
               Tissue Engineering. Int J Nanomedicine, 15:6097–111.  Potential  Bioink  for 3D Bioprinting of Articular  Cartilage
               https://doi.org/10.2147/ijn.S249829                 Engineering Constructs. Acta Biomater, 106:114–23.
           17.  Shirahama H, Lee BH, Tan LP, et al., 2016, Precise Tuning of      https://doi.org/10.1016/j.actbio.2020.01.046
               Facile One-Pot Gelatin Methacryloyl (GelMA) Synthesis. Sci   29.  Fraser JR, Laurent TC, Laurent UB, 1997, Hyaluronan: Its
               Rep, 6:31036.                                       Nature, Distribution, Functions and Turnover. J Intern Med,
               https://doi.org/10.1038/srep31036                   242:27–33.
           18.  Chimene D, Kaunas R, Gaharwar AK, 2020, Hydrogel Bioink      https://doi.org/10.1046/j.1365-2796.1997.00170.x
               Reinforcement  for  Additive  Manufacturing:  A  Focused   30.  Evanko  SP,  Angello  JC,  Wight  TN,  1999,  Formation  of
               Review of Emerging Strategies. Adv Mater, 32:e1902026.  Hyaluronan and Versican-rich Pericellular Matrix is Required
               https://doi.org/10.1002/adma.201902026              for Proliferation and Migration of Vascular Smooth Muscle
           19.  Bertlein  S,  Brown  G,  Lim  KS, et  al.,  2017,  Thiol-Ene   Cells. Arterioscler Thromb Vasc Biol, 19:1004–13.
               Clickable  Gelatin:  A  Platform  Bioink  for  Multiple  3D      https://doi.org/10.1161/01.atv.19.4.1004
               Biofabrication Technologies. Adv Mater, 29:44.  31.  Abatangelo  G,  Vindigni  V,  Avruscio  G, et  al.,  2020,
               https://doi.org/10.1002/adma.201703404              Hyaluronic Acid: Redefining its Role. Cells, 9:1743.
           20.  Liao  J,  Qu Y,  Chu  B, et al.,  2015,  Biodegradable  CSMA/     https://doi.org/10.3390/cells9071743
               PECA/Graphene Porous Hybrid Scaffold for Cartilage Tissue   32.  Burdick JA, Prestwich GD, 2011, Hyaluronic Acid Hydrogels
               Engineering. Sci Rep, 5:9879.                       for Biomedical Applications. Adv Mater, 23:H41–56.
               https://doi.org/10.1038/srep09879                   https://doi.org/10.1002/adma.201003963
           21.  Cui X, Li J, Hartanto Y, et al., 2020, Advances in Extrusion   33.  Shu  XZ,  Ahmad  S,  Liu  Y,  et  al.,  2006,  Synthesis  and
               3D  Bioprinting:  A  Focus  on  Multicomponent  Hydrogel-  Evaluation  of  Injectable,  In Situ  Crosslinkable  Synthetic
               Based Bioinks. Adv Healthc Mater, 9:e1901648.       Extracellular  Matrices  for  Tissue  Engineering.  J  Biomed
               https://doi.org/10.1002/adhm.201901648              Mater Res A, 79:902–12.
           22.  Zhang YS,  Haghiashtiani  G,  Hübscher T, et al.,  2021,  3D      https://doi.org/10.1002/jbm.a.30831
               Extrusion Bioprinting. Nat Rev Methods Prim, 1:75.  34.  Vanderhooft JL, Mann BK, Prestwich GD, 2007, Synthesis
               https://doi.org/10.1038/s43586-021-00073-8          and Characterization of Novel Thiol-reactive Poly(Ethylene
           23.  Daly AC, Freeman FE, Gonzalez-Fernandez T, et al., 2017,   Glycol)  Cross-linkers  for  Extracellular-matrix-mimetic
               3D  Bioprinting  for  Cartilage  and  Osteochondral  Tissue   Biomaterials. Biomacromolecules, 8:2883–9.
               Engineering. Adv Healthc Mater, 6:22.               https://doi.org/10.1021/bm0703564
               https://doi.org/10.1002/adhm.201700298          35.  Serban MA, Prestwich GD, 2007, Synthesis of Hyaluronan
           24.  Willson K, Atala A, Yoo JJ, 2021, Bioprinting Au Natural:   Haloacetates and Biology of Novel Cross-linker-free Synthetic
               The Biologics of Bioinks. Biomolecules, 11:1593.    Extracellular   Matrix   Hydrogels.   Biomacromolecules,
               https://doi.org/10.3390/biom11111593                8:2821–8.
           25.  Zhang J, Hu Q, Wang S, et al., 2020, Digital Light Processing      https://doi.org/10.1021/bm700595s
               Based Three-dimensional Printing for Medical Applications.   36.  Pouyani T, Prestwich GD, 1994, Functionalized Derivatives
               Int J Bioprint, 6:242.                              of  Hyaluronic  Acid  Oligosaccharides:  Drug  Carriers  and
               https://doi.org/10.18063/ijb.v6i1.242               Novel Biomaterials. Bioconjug Chem, 5:339–47.
           26.  Petta D, D’Amora U, Ambrosio L, et al., 2020, Hyaluronic      https://doi.org/10.1021/bc00028a010
               Acid  as  a  Bioink  for  Extrusion-based  3D  Printing.   37.  Darr A, Calabro A, 2009, Synthesis and Characterization of
               Biofabrication, 12:032001.                          Tyramine-based Hyaluronan Hydrogels. J Mater Sci Mater
               https://doi.org/10.1088/1758-5090/ab8752            Med, 20:33–44.
           27.  Kim SH, Kim DY, Lim TH, et al., 2020, Silk Fibroin Bioinks      https://doi.org/10.1007/s10856-008-3540-0
               for  Digital  Light  Processing  (DLP)  3D  Bioprinting.  In:   38.  Ozbolat IT, Hospodiuk M, 2016, Current Advances and Future

           26                          International Journal of Bioprinting (2022)–Volume 8, Issue 3
   29   30   31   32   33   34   35   36   37   38   39