Page 74 - IJB-8-3
P. 74

Extrusion of two-vasculature scaffold for angiogenesis
           12.  Sekine  H,  Okano  T,  2021,  Capillary  Networks  for  Bio-  23.  Sugihara K, Yamaguchi Y, Usui A, et al., “A New Perfusion
               Artificial Three-Dimensional Tissues Fabricated Using Cell   Culture  Method  with  a  Self-organized  Capillary  Network.
               Sheet Based Tissue Engineering. Int J Mol Sci, 22:92.  PLoS One, 15:e0240552.
               https://doi.org/10.3390/ijms22010092                https://doi.org/10.1371/journal.pone.0240552
           13.  Bertlein  S,  Hikimoto  D,  Hochleitner  G,  et  al.,  2018,   24.  Duong  VT,  Dang  TT,  Kim  JP,  et  al.,  2019,  Twelve-day
               Development  of  Endothelial  Cell  Networks  in  3D  Tissues   Medium Pumping into Tubular Cell-laden Scaffold Using a
               by Combination of Melt Electrospinning Writing with Cell-  Lab-made PDMS Connector. Eur Cell Mater, 38:1–13.
               Accumulation Technology. Small, 14:1701521.         https://doi.org/10.22203/eCM.v038a01
               https://doi.org/10.1002/smll.201701521          25.  Duong  VT,  Nguyen  T,  Choi  M,  et  al.,  2017,  Twenty-Day
           14.  Wang  Z,  Mithieux  SM,  Weiss  AS,  2019,  Fabrication   Culturing  of  Tubular  Scaffolds  Using  Micro-Connector
               Techniques for Vascular and Vascularized Tissue Engineering.   with  HeartMimicking  Medium  Pumping  for  Blood  Vessel
               Adv Healthc Mater, 8:1900742.                       Modeling. Georgia, USA: MicroTAS Georgia, USA.
               https://doi.org/10.1002/adhm.201900742          26.  Fisher AB,  Chien  S,  Barakat AI,  et  al.,  2001,  Endothelial
           15.  van Duinen V, Zhu D, Ramakers C, et al., 2019, Perfused   Cellular Response to Altered Shear Stress. Am J Physiol Lung
               3D  Angiogenic  Sprouting  in  a  High-throughput  In Vitro   Cell Mol Physiol, 281:L529–33.
               Platform. Angiogenesis, 22:157–65.                  https://doi.org/10.1152/ajplung.2001.281.3.L529
               https://doi.org/10.1007/s10456-018-9647-0       27.  Sarker  B,  Singh  R,  Silva  R,  et  al.,  2014,  Evaluation  of
           16.  Del Amo C, Borau C, Gutiérrez R, et al., 2016, Quantification   Fibroblasts Adhesion  and  Proliferation  on Alginate-gelatin
               of Angiogenic Sprouting under Different Growth Factors in a   Crosslinked Hydrogel. PLoS One, 9:e107952.
               Microfluidic Platform. J Biomech, 49:1340–6.        https://doi.org/10.1371/journal.pone.0107952
               https://doi.org/10.1016/j.jbiomech.2015.10.026  28.  Sarker B, Papageorgiou DG, Silva R, et al., 2014, Fabrication
           17.  Farahat  WA,  Wood  LB,  Zervantonakis  IK,  et  al.,  2012,   of  Alginate-gelatin  Crosslinked  Hydrogel  Microcapsules
               Ensemble  Analysis  of  Angiogenic  Growth  in  Three-  and Evaluation of the Microstructure and Physico-chemical
               dimensional  Microfluidic  Cell  Cultures.  PLoS One,   Properties. J Mater Chem B, 2:1470–82.
               7:e37333.    https://doi.org/10.1371/journal.pone.0037333     https://doi.org/10.1039/C3TB21509A
           18.  Duong  VT,  Dang  TT,  Hwang  CH,  et  al.,  2020,  Coaxial   29.  Jiang  T,  Munguia-Lopez  J,  Flores-Torres  S,  et  al.,  2018,
               Printing of Double-layered and Free-standing Blood Vessel   Bioprintable Alginate/Gelatin Hydrogel  3D  In Vitro Model
               Analogues without Ultraviolet Illumination for High-volume   Systems  Induce  Cell  Spheroid  Formation.  J  Vis Exp,
               Vascularised Tissue. Biofabrication, 12:045033.     137:57826.
               https://doi.org/10.1088/1758-5090/abafc6            https://doi.org/10.3791/57826
           19.  Gao G, Park JY, Kim BS, et al., 2018, Coaxial Cell Printing   30.  Rouwkema J, Koopman B, Blitterswijk C, et al., 2010, Supply
               of Freestanding, Perfusable, and Functional In Vitro Vascular   of Nutrients to Cells in Engineered Tissues. Biotechnol Genet
               Models for Recapitulation of Native Vascular Endothelium   Eng Rev, 26:163–78.
               Pathophysiology. Adv Healthc Mater, 7:e1801102.     https://doi.org/10.5661/bger-26-163
               https://doi.org/10.1002/adhm.201801102          31.  Krogh A, 1919, The Supply of Oxygen to the Tissues and the
           20.  Duong VT,  Nguyen T,  Phan  L,  et  al.,  2018,  Multi-Lumen   Regulation of the Capillary Circulation. J Physiol, 52:457–
               Tubular  Calcium-Alginate  Cell-Laden  Scaffold  Formation   74.
               for  3D  Bioprinting.  Taiwan:  Presented  at  the  MicroTAS,      https://doi.org/10.1113/jphysiol.1919.sp001844
               Kaohsiung, Taiwan.                              32.  Place TL, Domann FE, Case AJ, 2017, Limitations of Oxygen
           21.  Nguyen DH, Stapleton SC, Yang MT, et al., 2013, Biomimetic   Delivery to Cells in Culture: An Underappreciated Problem
               Model to Reconstitute Angiogenic Sprouting Morphogenesis   in Basic and Translational Research. Free Radic Biol Med,
               In Vitro. Proc Natl Acad Sci U S A, 110:6712–7.     113:311–22.
               https://doi.org/10.1073/pnas.1221526110             https://doi.org/10.1016/j.freeradbiomed.2017.10.003
           22.  Iruela-Arispe ML, Davis GE, 2009, Cellular and Molecular   33.  Cao X, Maharjan S, Ashfaq R, et al., 2021, Bioprinting of
               Mechanisms  of  Vascular  Lumen  Formation.  Dev Cell,   Small-Diameter Blood Vessels. Engineering, 7:832–44.
               16:222–31.                                          https://doi.org/10.1016/j.eng.2020.03.019
               https://doi.org/10.1016/j.devcel.2009.01.013    34.  Yan  J,  Liu  X,  Liu  J,  et  al.,  2021, A  Dual-layer  Cell-laden

           66                          International Journal of Bioprinting (2022)–Volume 8, Issue 3
   69   70   71   72   73   74   75   76   77   78   79