Page 75 - IJB-8-3
P. 75

Nguyen, et al.
               Tubular  Scaffold  for  Bile  Duct  Regeneration.  Mater Des,   J Nanobiotechnol, 19:349.
               212:110229.                                         https://doi.org/10.1186/s12951-021-01091-0
               https://doi.org/10.1016/j.matdes.2021.110229    45.  Hu Q, Su C, Zeng Z, et al., 2020, Fabrication of Multilayer
           35.  Bombaldi de Souza FC, Camasão DB, Bombaldi de Souza   Tubular  Scaffolds  with  Aligned  Nanofibers  to  Guide  the
               RF, et al., 2020, A Simple and Effective Approach to Produce   Growth of Endothelial Cells. J Biomater Appl, 35:553–66.
               Tubular  Polysaccharide-based  Hydrogel  Scaffolds.  J  Appl   https://doi.org/10.1177/0885328220935090
               Polym Sci, 137:48510.                           46.  Hong S, Kim JS, Jung B, et al., 2019, Coaxial Bioprinting
               https://doi.org/10.1002/app.48510                   of Cell-laden Vascular Constructs Using a Gelatin-Tyramine
           36.  Akkouch  A,  Yu  Y,  Ozbolat  IT,  2015,  Microfabrication  of   Bioink. Biomater Sci, 7:4578–87.
               Scaffold-free  Tissue  Strands  for  Three-dimensional  Tissue      https://doi.org/10.1039/C8BM00618K
               Engineering. Biofabrication, 7:031002.          47.  Wang  X,  Li  X,  Dai  X, et  al.,  2018,  Coaxial  Extrusion
               https://doi.org/10.1088/1758-5090/7/3/031002        Bioprinted Shell-core Hydrogel Microfibers Mimic Glioma
           37.  Fayol D, Le Visage C, Ino J, et al., 2013, Design of Biomimetic   Microenvironment  and  Enhance  the  Drug  Resistance  of
               Vascular Grafts with Magnetic Endothelial Patterning. Cell   Cancer Cells. Colloids Surf B Biointerfaces, 171:291–9.
               Transplantation, 22:2105–18.                        https://doi.org/10.1016/j.colsurfb.2018.07.042
               https://doi.org/10.3727/096368912x661300        48.  Abkarian M, Viallat A, 2005, Dynamics of Vesicles in a Wall-
           38.  Ju YM, Ahn H, Arenas-Herrera J, et al., 2017, Electrospun   Bounded Shear Flow. Biophys J, 89:1055–66.
               Vascular  Scaffold  for  Cellularized  Small  Diameter  Blood      https://doi.org/10.1529/biophysj.104.056036
               Vessels: A Preclinical Large Animal Study. Acta Biomater,   49.  Zhu C, Yago T, Lou J, et al., 2008, Mechanisms for Flow-
               59:58–67.                                           enhanced Cell Adhesion. Ann Biomed Eng, 36:604–21.
               https://doi.org/10.1016/j.actbio.2017.06.027        https://doi.org/10.1007/s10439-008-9464-5
           39.  Daum  R,  Visaser  D,  Wild  C, et  al.,  2020,  Fibronectin   50.  Park  S,  Joo  YK,  Chen  Y,  2018,  Dynamic  Adhesion
               Adsorption on Electrospun Synthetic Vascular Grafts Attracts   Characterization of Cancer Cells under Blood Flow-mimetic
               Endothelial Progenitor Cells and Promotes Endothelialization   Conditions: Effects of Cell Shape and Orientation on Drag
               in Dynamic In Vitro Culture. Cells, 9:778.          Force. Microfluid Nanofluid, 22:108.
               https://doi.org/10.3390/cells9030778                https://doi.org/10.1007/s10404-018-2132-7
           40.  Hossain KM, Zhu C, Felfel RM, et al., 2015, Tubular Scaffold   51.  Roux E, Bougaran P, Dufourcq P, et al., 2020, Fluid Shear
               with  Shape  Recovery  Effect  for  Cell  Guide  Applications.   Stress  Sensing  by  the  Endothelial  Layer.  Front Physiol,
               J Funct Biomater, 6:564–84.                         11:861–1.
               https://doi.org/10.3390/jfb6030564                  https://doi.org/10.3389/fphys.2020.00861
           41.  Alessandrino  A, et  al.,  2019,  Three-Layered  Silk  Fibroin   52.  del Álamo JC, Norwich GN, Li YS, et al., 2008, Anisotropic
               Tubular Scaffold for the Repair and Regeneration of Small   Rheology and Directional Mechanotransduction in Vascular
               Caliber Blood Vessels: From Design to In Vivo Pilot Tests.   Endothelial Cells. Proc Natl Acad Sci, 105:15411–6.
               Front Bioeng Biotechnol, 7:356.                     https://doi.org/10.1073/pnas.0804573105
               https://doi.org/10.3389/fbioe.2019.00356        53.  Krüger-Genge A, Blocki A, Franke RP, et al., 2019, Vascular
           42.  Li MX, Li L, Zhou SY, et al., 2021, A Biomimetic Orthogonal-  Endothelial Cell Biology: An Update. Int J Mol Sci, 20:4411.
               bilayer  Tubular  Scaffold  for  the  Co-culture  of  Endothelial      https://doi.org/10.3390/ijms20184411
               Cells and Smooth Muscle Cells. RSC Adv, 11:31783–90.  54.  Chistiakov DA, Orekhov AN, Bobryshev YV, 2017, Effects
               https://doi.org/10.1039/D1RA04472A                  of Shear Stress on Endothelial Cells: Go with the Flow. Acta
           43.  Niu Y, Galluzzi M, 2021, Hyaluronic Acid/Collagen Nanofiber   Physiologica, 219:382–408.
               Tubular  Scaffolds  Support  Endothelial  Cell  Proliferation,      https://doi.org/10.1111/apha.12725.
               Phenotypic  Shape  and  Endothelialization.  Nanomaterials,   55.  Malek AM, Izumo S, 1996, Mechanism of Endothelial Cell
               11:2334.                                            Shape Change and Cytoskeletal Remodeling in Response to
               https://doi.org/10.3390/nano11092334                Fluid Shear Stress. J Cell Sci, 109 Pt 4:713–26.
           44.  Niu Y, Galluzzi M, Fu M, et al., 2021, In Vivo Performance of   56.  Ballermann BJ, Dardik A, Eng E, et al., 1998, Shear Stress
               Electrospun Tubular Hyaluronic Acid/Collagen Nanofibrous   and the Endothelium. Kidney Int, 54:S100–8.
               Scaffolds for Vascular Reconstruction in the Rabbit Model.      https://doi.org/10.1046/j.1523-1755.1998.06720.x

                                       International Journal of Bioprinting (2022)–Volume 8, Issue 3        67
   70   71   72   73   74   75   76   77   78   79   80