Page 88 - IJB-8-3
P. 88
Protein Nanoparticles Promote Cell Growth in 3D Bioprinted Constructs
for Tissue and Organ Engineering, Microfluidics, BioMEMS, Brine Pool. FEBS Open Bio, 9:194–205.
and Medical Microsystems XVII. International Society for https://doi.org/10.1002/2211-5463.12557
Optics and Photonics, 108750Q. 52. Silva IC, Delgado AB, Silva PH, et al., 2018, Focused
42. Rauf S, Susapto HH, Kahin K, et al., 2020, Self- ultrasound and Alzheimer’s disease A systematic review.
assembling Tetrameric Peptides Allow In Situ 3D Dement Neuropsychol, 12:353–9.
Bioprinting under Physiological Conditions. J Mater https://doi.org/10.1590/1980-57642018dn12-040003
Chem B, 9:1069–81. 53. Hauser CA, Deng R, Mishra A, et al., 2011, Natural
https://doi.org/10.1039/D0TB02424D Tri- to Hexapeptides Self-assemble in Water to Amyloid
43. Susapto HH, Alhattab D, Abdelrahman S, et al., 2021, Beta-type Fiber Aggregates by Unexpected Alpha-helical
Ultrashort Peptide Bioinks Support Automated Printing of Intermediate Structures. Proc Natl Acad Sci U S A, 108:1361–6.
Large-Scale Constructs Assuring Long-Term Survival of https://doi.org/10.1073/pnas.1014796108
Printed Tissue Constructs. Nano Lett, 21:2719–29. 54. Alshehri S, Susapto HH, Hauser CA, 2021, Scaffolds from Self-
https://doi.org/10.1021/acs.nanolett.0c04426 Assembling Tetrapeptides Support 3D Spreading, Osteogenic
44. Sundararajan A, Ju LK, 2006, Use of Cyanobacterial Gas Differentiation, and Angiogenesis of Mesenchymal Stem
Vesicles as Oxygen Carriers in Cell Culture. Cytotechnology, Cells. Biomacromolecules, 22:2094–106.
52:139–49. https://doi.org/10.1021/acs.biomac.1c00205
https://doi.org/10.1007/s10616-007-9044-9 55. Gustavo Ramirez-Calderon H H S a C A E H, 2021, Delivery
45. DasSarma S, Fleischmann E, Rodriguez-Valera F, 1995, of Endothelial Cell-Laden Microgel Elicits Angiogenesis in
Media for halophiles. In: Robb FT, Place AR, Sowers KR, Self-Assembling Ultrashort Peptide Hydrogels In Vitro. ACS
Schreier HJ, DasSarma S, Fleischmann ME, editors. Archaea: Appl Mater Interfaces, 13:29281–92.
A Laboratory Manual. Vol. 1. Cold Spring Harbor, NY: Cold https://doi.org/10.1021/acsami.1c03787
Spring Harbor Laboratory Press, p225–30. 56. Stuart ES, Morshed F, Sremac M, et al., 2001, Antigen
46. Strillinger E, Grötzinger SW, Allers T, et al., 2016, Production Presentation Using Novel Particulate Organelles from
of Halophilic Proteins Using Haloferax volcanii H1895 Halophilic Archaea. J Biotechnol, 88:119–28.
in a Stirred-tank Bioreactor. Appl Microbiol Biotechnol, https://doi.org/10.1016/S0168-1656(01)00267-X
100:1183–95. 57. DasSarma P, Negi V, Balakrishnan A, et al., 2015, Haloarchaeal
https://doi.org/10.1007/s00253-015-7007-1 Gas Vesicle Nanoparticles Displaying Salmonella Antigens
47. Grotzinger SW, Karan R, Strillinger E, et al., 2018, as a Novel Approach to Vaccine Development. Proc Vaccinol,
Identification and Experimental Characterization of an 9:16.
Extremophilic Brine Pool Alcohol Dehydrogenase from https://doi.org/10.1016/j.provac.2015.05.003
Single Amplified Genomes. ACS Chem Biol, 13:161–70. 58. Sremac M, Stuart ES, 2008, Recombinant Gas Vesicles from
https://doi.org/10.1021/acschembio.7b00792 Halobacterium sp. Displaying SIV Peptides Demonstrate
48. Grote A, Hiller K, Scheer M, et al., 2005, JCat: A Novel Biotechnology Potential as a Pathogen Peptide Delivery
Tool to Adapt Codon Usage of a Target Gene to its Potential Vehicle. BMC Biotechnol, 8:9.
Expression Host. Nucleic Acids Res, 33(Web Server https://doi.org/10.1186/1472-6750-8-9
issue):W526–31. 59. Stuart ES, Morshed F, Sremac M, et al., 2004, Cassette-based
https://doi.org/10.1093/nar/gki376 Presentation of SIV Epitopes with Recombinant Gas Vesicles
49. Dyall-Smith M, 2008, The Halohandbook-Protocols from Halophilic Archaea. J Biotechnol, 114:225–37.
for Haloarchaeal Genetics, Version 7.0. Bathurst, NSW, https://doi.org/10.1016/j.jbiotec.2004.01.005
Australia. Available from: https://haloarchaea.com/wp- 60. Khan Z, Kahin K, Melle F, et al., 2019, Assessing the
content/uploads/2018/10/Halohandbook_2009_v7.3mds.pdf Bioprintability of Self-Assembling Peptide Bioinks in Terms
50. Ghalayini S, Susapto HH, Hall S, et al., 2019, Preparation of Structure Fidelity and Cell Viability. 9 International
th
and Printability of Ultrashort Self-assembling Peptide Conference on Advances in Applied Science and
Nanoparticles. Int J Bioprint, 5:239. Environmental Technology, p8-14.
https://doi.org/10.18063/ijb.v5i2.239 61. Vogler M, Karan R, Renn D, et al., 2020, Crystal Structure
51. Akal AL, Karan R, Hohl A, et al., 2019, A Polyextremophilic and Active Site Engineering of a Halophilic gamma-Carbonic
Alcohol Dehydrogenase from the Atlantis II Deep Red Sea Anhydrase. Front Microbiol, 11:742.
80 International Journal of Bioprinting (2022)–Volume 8, Issue 3

