Page 88 - IJB-8-3
P. 88

Protein Nanoparticles Promote Cell Growth in 3D Bioprinted Constructs
               for Tissue and Organ Engineering, Microfluidics, BioMEMS,   Brine Pool. FEBS Open Bio, 9:194–205.
               and Medical  Microsystems XVII. International  Society  for      https://doi.org/10.1002/2211-5463.12557
               Optics and Photonics, 108750Q.                  52.  Silva IC, Delgado  AB, Silva PH, et  al., 2018, Focused
           42.  Rauf S, Susapto HH, Kahin K, et al., 2020, Self-   ultrasound and  Alzheimer’s disease  A systematic  review.
               assembling  Tetrameric  Peptides Allow  In Situ 3D   Dement Neuropsychol, 12:353–9.
               Bioprinting under Physiological Conditions.  J  Mater      https://doi.org/10.1590/1980-57642018dn12-040003
               Chem B, 9:1069–81.                              53.  Hauser CA, Deng R, Mishra  A, et al., 2011, Natural
               https://doi.org/10.1039/D0TB02424D                  Tri-  to Hexapeptides Self-assemble in  Water to  Amyloid
           43.  Susapto HH,  Alhattab  D,  Abdelrahman  S, et al., 2021,   Beta-type  Fiber  Aggregates by Unexpected  Alpha-helical
               Ultrashort Peptide Bioinks Support Automated Printing of   Intermediate Structures. Proc Natl Acad Sci U S A, 108:1361–6.
               Large-Scale  Constructs  Assuring Long-Term  Survival  of      https://doi.org/10.1073/pnas.1014796108
               Printed Tissue Constructs. Nano Lett, 21:2719–29.  54.  Alshehri S, Susapto HH, Hauser CA, 2021, Scaffolds from Self-
               https://doi.org/10.1021/acs.nanolett.0c04426        Assembling Tetrapeptides Support 3D Spreading, Osteogenic
           44.  Sundararajan A, Ju LK, 2006, Use of Cyanobacterial  Gas   Differentiation,  and  Angiogenesis  of  Mesenchymal  Stem
               Vesicles as Oxygen Carriers in Cell Culture. Cytotechnology,   Cells. Biomacromolecules, 22:2094–106.
               52:139–49.                                          https://doi.org/10.1021/acs.biomac.1c00205
               https://doi.org/10.1007/s10616-007-9044-9       55.  Gustavo Ramirez-Calderon H H S a C A E H, 2021, Delivery
           45.  DasSarma S, Fleischmann  E, Rodriguez-Valera  F, 1995,   of Endothelial Cell-Laden Microgel Elicits Angiogenesis in
               Media for halophiles. In: Robb FT, Place AR, Sowers KR,   Self-Assembling Ultrashort Peptide Hydrogels In Vitro. ACS
               Schreier HJ, DasSarma S, Fleischmann ME, editors. Archaea:   Appl Mater Interfaces, 13:29281–92.
               A Laboratory Manual. Vol. 1. Cold Spring Harbor, NY: Cold      https://doi.org/10.1021/acsami.1c03787
               Spring Harbor Laboratory Press, p225–30.        56.  Stuart ES, Morshed F, Sremac M, et al.,  2001, Antigen
           46.  Strillinger E, Grötzinger SW, Allers T, et al., 2016, Production   Presentation Using Novel Particulate Organelles from
               of Halophilic  Proteins  Using  Haloferax  volcanii H1895   Halophilic Archaea. J Biotechnol, 88:119–28.
               in  a  Stirred-tank  Bioreactor.  Appl  Microbiol  Biotechnol,      https://doi.org/10.1016/S0168-1656(01)00267-X
               100:1183–95.                                    57.  DasSarma P, Negi V, Balakrishnan A, et al., 2015, Haloarchaeal
               https://doi.org/10.1007/s00253-015-7007-1           Gas Vesicle Nanoparticles Displaying Salmonella Antigens
           47.  Grotzinger  SW, Karan R, Strillinger  E, et  al., 2018,   as a Novel Approach to Vaccine Development. Proc Vaccinol,
               Identification  and  Experimental  Characterization  of  an   9:16.
               Extremophilic  Brine Pool  Alcohol Dehydrogenase from      https://doi.org/10.1016/j.provac.2015.05.003
               Single Amplified Genomes. ACS Chem Biol, 13:161–70.  58.  Sremac M, Stuart ES, 2008, Recombinant Gas Vesicles from
               https://doi.org/10.1021/acschembio.7b00792          Halobacterium sp. Displaying SIV Peptides Demonstrate
           48.  Grote A, Hiller  K, Scheer  M, et  al., 2005, JCat: A  Novel   Biotechnology  Potential  as a Pathogen  Peptide  Delivery
               Tool to Adapt Codon Usage of a Target Gene to its Potential   Vehicle. BMC Biotechnol, 8:9.
               Expression  Host.  Nucleic  Acids  Res, 33(Web  Server      https://doi.org/10.1186/1472-6750-8-9
               issue):W526–31.                                 59.  Stuart ES, Morshed F, Sremac M, et al., 2004, Cassette-based
               https://doi.org/10.1093/nar/gki376                  Presentation of SIV Epitopes with Recombinant Gas Vesicles
           49.  Dyall-Smith  M, 2008,  The Halohandbook-Protocols   from Halophilic Archaea. J Biotechnol, 114:225–37.
               for Haloarchaeal  Genetics,  Version 7.0. Bathurst, NSW,      https://doi.org/10.1016/j.jbiotec.2004.01.005
               Australia.  Available  from:  https://haloarchaea.com/wp-  60.  Khan Z, Kahin K, Melle F,  et al., 2019,  Assessing  the
               content/uploads/2018/10/Halohandbook_2009_v7.3mds.pdf   Bioprintability of Self-Assembling Peptide Bioinks in Terms
           50.  Ghalayini S, Susapto HH, Hall S, et al., 2019, Preparation   of Structure Fidelity  and Cell  Viability. 9   International
                                                                                                   th
               and Printability  of Ultrashort Self-assembling Peptide   Conference  on  Advances in  Applied Science  and
               Nanoparticles. Int J Bioprint, 5:239.               Environmental Technology, p8-14.
               https://doi.org/10.18063/ijb.v5i2.239           61.  Vogler M, Karan R, Renn D, et al., 2020, Crystal Structure
           51.  Akal AL, Karan R, Hohl A, et al., 2019, A Polyextremophilic   and Active Site Engineering of a Halophilic gamma-Carbonic
               Alcohol Dehydrogenase from the Atlantis II Deep Red Sea   Anhydrase. Front Microbiol, 11:742.

           80                          International Journal of Bioprinting (2022)–Volume 8, Issue 3
   83   84   85   86   87   88   89   90   91   92   93