Page 87 - IJB-8-3
P. 87
Alshehri, et al.
Tissues. Proc Natl Acad Sci, 113:3179–84. 14:953–8.
https://doi.org/10.1073/pnas.1521342113 https://doi.org/10.1021/acs.molpharmaceut.6b00859
19. Zhang B, Luo Y, Ma L, et al., 2018, 3D Bioprinting: An 31. Lu GJ, Chou LD, Malounda D, et al., 2020, Genetically
Emerging Technology Full of Opportunities and Challenges. Encodable Contrast Agents for Optical Coherence
Biodes Manuf, 1:2-13. Tomography. ACS Nano, 14:7823–31.
https://doi.org/10.1007/s42242-018-0004-3 https://doi.org/10.1021/acsnano.9b08432
20. Zhang YS, Yue K, Aleman J, et al., 2017, 3D Bioprinting for 32. Szablowski JO, Bar-Zion A, Shapiro MG, 2019, Achieving
Tissue and Organ Fabrication. Ann Biomed Eng, 45:148–63. Spatial and Molecular Specificity with Ultrasound-targeted
https://doi.org/10.1007/s10439-016-1612-8 Biomolecular Nanotherapeutics. Acc Chem Res, 52:2427–34.
21. Suvarnapathaki S, Wu X, Lantigua D, et al., 2019, Breathing https://doi.org/10.1021/acs.accounts.9b00277
Life into Engineered Tissues Using Oxygen-releasing 33. Lu GJ, Farhadi A, Szablowski JO, et al., 2018, Acoustically
Biomaterials. NPG Asia Mater, 11:65. Modulated Magnetic Resonance Imaging of Gas-filled
https://doi.org/10.1038/s41427-019-0166-2 Protein Nanostructures. Nat Mater, 17:456–63.
22. Erdem A, Darabi MA, Nasiri R, et al., 2020, 3D Bioprinting https://doi.org/10.1038 s41563-018-0023-7
of Oxygenated Cell‐Laden Gelatin Methacryloyl Constructs. 34. Lakshmanan A, Farhadi A, Nety SP, et al., 2016, Molecular
Adv Healthc Mater, 9:1901794. Engineering of Acoustic Protein Nanostructures. ACS Nano,
https://doi.org/10.1002/adhm.201901794 10:7314–22.
23. Pedraza E, Coronel MM, Fraker CA, et al., 2012, Preventing https://doi.org/10.1021/acsnano.6b03364
Hypoxia-induced Cell Death in Beta Cells and Islets Via 35. DasSarma P, Negi VD, Balakrishnan A, et al., 2014,
Hydrolytically Activated, Oxygen-generating Biomaterials. Haloarchaeal Gas Vesicle Nanoparticles Displaying
Proc Natl Acad Sci U S A, 109:4245–4250. Salmonella SopB Antigen Reduce Bacterial Burden when
https://doi.org/10.1073/pnas.1113560109 Administered with Live Attenuated Bacteria. Vaccine,
24. McQuilling JP, Sittadjody S, Pendergraft S, et al., 2017, 32:4543–9.
Applications of Particulate Oxygen-generating Substances https://doi.org/10.1016/j.vaccine.2014.06.021
(POGS) in the Bioartificial Pancreas. Biomater Sci, 36. Balakrishnan A, DasSarma P, Bhattacharjee O, et al., 2016,
5:2437–47. Halobacterial nano vesicles displaying murine bactericidal
https://doi.org/10.1039/c7bm00790f permeability-increasing protein rescue mice from lethal
25. Ward KR, Huvard GS, McHugh M, et al., 2013, Chemical endotoxic shock. Sci Rep, 6:1–11.
Oxygen Generation. Respir Care, 58:184–95. https://doi.org/10.1038/srep33679
https://doi.org/10.4187/respcare.01983 37. Loo Y, Lakshmanan A, Ni M, et al., 2015, Peptide Bioink:
26. Pfeifer F, 2015, Haloarchaea and the Formation of Gas Self-assembling Nanofibrous Scaffolds for Three-dimensional
Vesicles. Life, 5:385–402. Organotypic Cultures. Nano Lett, 15:6919–25.
27. DasSarma S, Karan R, DasSarma P, et al., 2013, An Improved https://doi.org/10.1021/acs.nanolett.5b02859
Genetic System for Bioengineering Buoyant Gas Vesicle 38. Loo Y, Hauser CA, 2015, Bioprinting Synthetic Self-
Nanoparticles from Haloarchaea. BMC Biotechnol, 13:112. assembling Peptide Hydrogels for Biomedical Applications.
https://doi.org/10.1186/1472-6750-13-112 Biomed Mater, 11:014103.
28. Kunth M, Lu GJ, Witte C, et al., 2018, Protein Nanostructures https://doi.org/10.1088/1748-6041/11/1/014103
Produce Self-Adjusting Hyperpolarized Magnetic Resonance 39. Sundaramurthi D, Rauf S, Hauser C, 2016, 3D Bioprinting
Imaging Contrast through Physical Gas Partitioning. ACS Technology for Regenerative Medicine Applications. Int J
Nano, 12:10939–48. Bioprint, 2:78.
https://doi.org/10.1021/acsnano.8b04222 https://doi.org/10.18063/IJB.2016.02.010
29. Pfeifer F, 2012, Distribution, Formation and Regulation of 40. Khan Z, Kahin K, Rauf S, et al., 2019, Optimization of a 3D
Gas Vesicles. Nat Rev Microbiol, 10:705–15. Bioprinting Process Using Ultrashort Peptide Bioinks. Int J
https://doi.org/10.1038/nrmicro2834 Bioprint, 5:173.
30. Andar AU, Karan R, Pecher WT, et al., 2017, https://doi.org/10.18063/ijb.v5i1.173
Microneedle-Assisted Skin Permeation by Nontoxic 41. Kahin K, Khan Z, Albagami M, et al., 2019, Development of
Bioengineerable Gas Vesicle Nanoparticles. Mol Pharm, a Robotic 3D Bioprinting and Microfluidic Pumping System
International Journal of Bioprinting (2022)–Volume 8, Issue 3 79

