Page 87 - IJB-8-3
P. 87

Alshehri, et al.
               Tissues. Proc Natl Acad Sci, 113:3179–84.           14:953–8.
               https://doi.org/10.1073/pnas.1521342113             https://doi.org/10.1021/acs.molpharmaceut.6b00859
           19.  Zhang  B,  Luo Y,  Ma  L,  et  al.,  2018,  3D Bioprinting: An   31.  Lu GJ, Chou LD, Malounda D, et al., 2020, Genetically
               Emerging Technology Full of Opportunities and Challenges.   Encodable  Contrast  Agents for Optical  Coherence
               Biodes Manuf, 1:2-13.                               Tomography. ACS Nano, 14:7823–31.
               https://doi.org/10.1007/s42242-018-0004-3           https://doi.org/10.1021/acsnano.9b08432
           20.  Zhang YS, Yue K, Aleman J, et al., 2017, 3D Bioprinting for   32.  Szablowski JO, Bar-Zion A, Shapiro MG, 2019, Achieving
               Tissue and Organ Fabrication. Ann Biomed Eng, 45:148–63.  Spatial  and  Molecular  Specificity  with  Ultrasound-targeted
               https://doi.org/10.1007/s10439-016-1612-8           Biomolecular Nanotherapeutics. Acc Chem Res, 52:2427–34.
           21.  Suvarnapathaki S, Wu X, Lantigua D, et al., 2019, Breathing      https://doi.org/10.1021/acs.accounts.9b00277
               Life into Engineered  Tissues  Using  Oxygen-releasing   33.  Lu GJ, Farhadi A, Szablowski JO, et al., 2018, Acoustically
               Biomaterials. NPG Asia Mater, 11:65.                Modulated  Magnetic  Resonance  Imaging  of  Gas-filled
               https://doi.org/10.1038/s41427-019-0166-2           Protein Nanostructures. Nat Mater, 17:456–63.
           22.  Erdem A, Darabi MA, Nasiri R, et al., 2020, 3D Bioprinting      https://doi.org/10.1038 s41563-018-0023-7
               of Oxygenated Cell‐Laden Gelatin Methacryloyl Constructs.   34.  Lakshmanan A, Farhadi A, Nety SP, et al., 2016, Molecular
               Adv Healthc Mater, 9:1901794.                       Engineering of Acoustic Protein Nanostructures. ACS Nano,
               https://doi.org/10.1002/adhm.201901794              10:7314–22.
           23.  Pedraza E, Coronel MM, Fraker CA, et al., 2012, Preventing      https://doi.org/10.1021/acsnano.6b03364
               Hypoxia-induced Cell Death in Beta Cells and Islets  Via   35.  DasSarma  P, Negi  VD, Balakrishnan  A, et  al., 2014,
               Hydrolytically  Activated,  Oxygen-generating  Biomaterials.   Haloarchaeal  Gas  Vesicle  Nanoparticles  Displaying
               Proc Natl Acad Sci U S A, 109:4245–4250.            Salmonella SopB  Antigen  Reduce Bacterial  Burden when
               https://doi.org/10.1073/pnas.1113560109             Administered  with Live  Attenuated Bacteria.  Vaccine,
           24.  McQuilling JP, Sittadjody S, Pendergraft S, et al., 2017,   32:4543–9.
               Applications of Particulate Oxygen-generating Substances      https://doi.org/10.1016/j.vaccine.2014.06.021
               (POGS)  in  the  Bioartificial  Pancreas.  Biomater  Sci,   36.  Balakrishnan A, DasSarma P, Bhattacharjee O, et al., 2016,
               5:2437–47.                                          Halobacterial  nano vesicles  displaying  murine  bactericidal
               https://doi.org/10.1039/c7bm00790f                  permeability-increasing  protein rescue mice  from lethal
           25.  Ward KR, Huvard GS, McHugh M, et al., 2013, Chemical   endotoxic shock. Sci Rep, 6:1–11.
               Oxygen Generation. Respir Care, 58:184–95.          https://doi.org/10.1038/srep33679
               https://doi.org/10.4187/respcare.01983          37.  Loo Y, Lakshmanan A, Ni M, et al., 2015, Peptide Bioink:
           26.  Pfeifer F, 2015, Haloarchaea  and the Formation  of Gas   Self-assembling Nanofibrous Scaffolds for Three-dimensional
               Vesicles. Life, 5:385–402.                          Organotypic Cultures. Nano Lett, 15:6919–25.
           27.  DasSarma S, Karan R, DasSarma P, et al., 2013, An Improved      https://doi.org/10.1021/acs.nanolett.5b02859
               Genetic  System  for Bioengineering Buoyant  Gas  Vesicle   38.  Loo  Y, Hauser CA, 2015, Bioprinting Synthetic Self-
               Nanoparticles from Haloarchaea. BMC Biotechnol, 13:112.  assembling Peptide Hydrogels for Biomedical Applications.
               https://doi.org/10.1186/1472-6750-13-112            Biomed Mater, 11:014103.
           28.  Kunth M, Lu GJ, Witte C, et al., 2018, Protein Nanostructures      https://doi.org/10.1088/1748-6041/11/1/014103
               Produce Self-Adjusting Hyperpolarized Magnetic Resonance   39.  Sundaramurthi D, Rauf S, Hauser C, 2016, 3D Bioprinting
               Imaging Contrast through Physical Gas Partitioning.  ACS   Technology for Regenerative  Medicine Applications.  Int J
               Nano, 12:10939–48.                                  Bioprint, 2:78.
               https://doi.org/10.1021/acsnano.8b04222             https://doi.org/10.18063/IJB.2016.02.010
           29.  Pfeifer F, 2012, Distribution, Formation and Regulation of   40.  Khan Z, Kahin K, Rauf S, et al., 2019, Optimization of a 3D
               Gas Vesicles. Nat Rev Microbiol, 10:705–15.         Bioprinting Process Using Ultrashort Peptide Bioinks. Int J
               https://doi.org/10.1038/nrmicro2834                 Bioprint, 5:173.
           30.  Andar  AU, Karan R, Pecher  WT, et al., 2017,      https://doi.org/10.18063/ijb.v5i1.173
               Microneedle-Assisted Skin Permeation by Nontoxic   41.  Kahin K, Khan Z, Albagami M, et al., 2019, Development of
               Bioengineerable Gas Vesicle Nanoparticles. Mol Pharm,   a Robotic 3D Bioprinting and Microfluidic Pumping System

                                       International Journal of Bioprinting (2022)–Volume 8, Issue 3        79
   82   83   84   85   86   87   88   89   90   91   92