Page 123 - IJB-8-4
        P. 123
     Wang, et al.
               Shaped Implant a Superior  Alternative to the Dynamic   Density on Synthetic Femur Behaviour. Proc Inst Mech Eng
               Hip Screw for Unstable Femoral Neck Fractures?  A   H, 225:1050–60.
               Biomechanical Investigation. Clin Biomech (Bristol, Avon),      https://doi.org/10.1177/0954411911420004
               24:59–64.                                       20.  Nicayenzi  B, Crookshank M, Olsen M, et al., 2012,
               https://doi.org/10.1016/j.clinbiomech.2008.07.004   Biomechanical  Measurements of Cortical  Screw Stripping
           10.  Stafford P, Goulet R, Norris B, 2000, The Effect of Screw   Torque in Human Versus Artificial Femurs. Proc Inst Mech
               Insertion Site and Unused Drill Holes on Stability and Mode   Eng H, 226:645–51.
               of Failure after  Fixation  of Basicervical  Femoral  Neck      https://doi.org/10.1177/0954411912450998
               Fracture. Crit Rev Biomed Eng, 28:11–6.         21.  Fensky  F,  Nüchtern  JV,  Kolb  JP, et  al., 2013, Cement
               https://doi.org/10.1615/critrevbiomedeng.v28.i12.40  Augmentation of the Proximal Femoral Nail Antirotation for
           11.  Huang  Y, Zhang  C, Luo  Y, 2013,  A Comparative   the  Treatment of Osteoporotic Pertrochanteric  Fractures--a
               Biomechanical Study of Proximal Femoral Nail (InterTAN)   Biomechanical Cadaver Study. Injury, 44:802–7.
               and Proximal Femoral Nail Antirotation for Intertrochanteric      https://doi.org/10.1016/j.injury.2013.03.003
               Fractures. Int Orthop, 37:2465–73.              22.  Knobe M, Gradl G, Maier KJ, et al., 2013, Rotationally
               https://doi.org/10.1007/s00264-013-2120-1           Stable Screw-anchor Versus Sliding Hip Screw Plate Systems
           12.  Rupprecht M, Grossterlinden L, Sellenschloh K, et al., 2011,   in Stable  Trochanteric  Femur Fractures:  A  Biomechanical
               Internal Fixation of Femoral Neck Fractures with Posterior   Evaluation. J Orthop Trauma, 27:e127–36.
               Comminution: A Biomechanical Comparison of DHS® and      https://doi.org/10.1097/BOT.0b013e318278112a
               Intertan Nail®. Int Orthop, 35:1695–701.        23.  Bellato  E,  Kim Y, Fitzsimmons JS, et  al., 2017, Coronoid
               https://doi.org/10.1007/s00264-010-1199-x           Reconstruction using Osteochondral Grafts: A Biomechanical
           13.  Li J, Han L, Zhang H, et al., 2019, Medial Sustainable Nail   Study. J Shoulder Elbow Surg, 26:1794–802.
               Versus  Proximal  Femoral  Nail  Antirotation  in  Treating      https://doi.org/10.1016/j.jse.2017.05.010
               AO/OTA  31-A2.3 Fractures:  Finite  Element  Analysis  and   24.  Högel F, Hoffmann S, Panzer S, et al., 2013, Biomechanical
               Biomechanical Evaluation. Injury, 50:648–56.        Comparison  of  Intramedullar  Versus  Extramedullar
               https://doi.org/10.1016/j.injury.2019.02.008        Stabilization of Intra-articular Tibial Plateau Fractures. Arch
           14.  Bartel  T,  Rivard A,  Jimenez A, et al.,  2018,  Medical   Orthop Trauma Surg, 133:59–64.
               Three-dimensional Printing Opens up New Opportunities      https://doi.org/10.1007/s00402-012-1629-x
               in  Cardiology  and  Cardiac  Surgery.  Eur  Heart  J,   25.  Bellato  E,  Fitzsimmons  JS, Kim Y,  et  al.,  2018, Articular
               39:1246–54.                                         Contact  Area and Pressure in Posteromedial  Rotatory
               https://doi.org/10.1093/eurheartj/ehx016            Instability of the Elbow. J Bone Joint Surg Am, 100:e34.
           15.  Prendergast ME, Burdick  JA, 2020, Recent  Advances in      https://doi.org/10.2106/jbjs.16.01321
               Enabling Technologies in 3D Printing for Precision Medicine.   26.  Gray AB, Alolabi B, Ferreira LM, et al., 2013, The Effect of
               Adv Mater, 32:e1902516.                             a Coronoid Prosthesis on Restoring Stability to the Coronoid-
               https://doi.org/10.1002/adma.201902516              deficient Elbow: A Biomechanical Study. J Hand Surg Am,
           16.  Wang Z,  Yang  Y, 2021,  Application of 3D Printing   38:1753–61.
               in  Implantable  Medical  Devices.  Biomed  Res  Int,      https://doi.org/10.1016/j.jhsa.2013.05.004
               2021:6653967.                                   27.  Jung  MK,  von  Ehrlich-Treuenstätt  GVR,  Jung  AL, et al.,
               https://doi.org/10.1155/2021/6653967                2021, Evaluation of External Stabilization of Type II Odontoid
           17.  Gardner MP, Chong AC, Pollock AG, et al., 2010, Mechanical   Fractures in Geriatric Patients-an Experimental Study on a Newly
               Evaluation  of Large-size Fourth-generation  Composite   Developed Cadaveric Trauma Model. PLoS One, 16:e0260414.
               Femur and Tibia Models. Ann Biomed Eng, 38:613–20.     https://doi.org/10.1371/journal.pone.0260414
               https://doi.org/10.1007/s10439-009-9887-7       28.  Zhang RY, Li JT, Zhao JX, et al., 2022, The Oblique Triangle
           18.  Heiner A D, 2008, Structural Properties of Fourth-generation   Configuration  of  Three  Parallel  Screws for Femoral  Neck
               Composite Femurs and Tibias. J Biomech, 41:3282–4.  Fracture Fixation using Computer-aided Design Modules. Sci
               https://doi.org/10.1016/j.jbiomech.2008.08.013      Rep, 12:325.
           19.  Nicayenzi B, Shah S, Schemitsch EH, et al.,  2011, The      https://doi.org/10.1038/s41598-021-03666-1
               Biomechanical  Effect  of  Changes  in  Cancellous  Bone   29.  Guo H, Li J, Gao Y, et al., 2021, A Finite Element Study on
                                       International Journal of Bioprinting (2022)–Volume 8, Issue 4       115





