Page 123 - IJB-8-4
P. 123
Wang, et al.
Shaped Implant a Superior Alternative to the Dynamic Density on Synthetic Femur Behaviour. Proc Inst Mech Eng
Hip Screw for Unstable Femoral Neck Fractures? A H, 225:1050–60.
Biomechanical Investigation. Clin Biomech (Bristol, Avon), https://doi.org/10.1177/0954411911420004
24:59–64. 20. Nicayenzi B, Crookshank M, Olsen M, et al., 2012,
https://doi.org/10.1016/j.clinbiomech.2008.07.004 Biomechanical Measurements of Cortical Screw Stripping
10. Stafford P, Goulet R, Norris B, 2000, The Effect of Screw Torque in Human Versus Artificial Femurs. Proc Inst Mech
Insertion Site and Unused Drill Holes on Stability and Mode Eng H, 226:645–51.
of Failure after Fixation of Basicervical Femoral Neck https://doi.org/10.1177/0954411912450998
Fracture. Crit Rev Biomed Eng, 28:11–6. 21. Fensky F, Nüchtern JV, Kolb JP, et al., 2013, Cement
https://doi.org/10.1615/critrevbiomedeng.v28.i12.40 Augmentation of the Proximal Femoral Nail Antirotation for
11. Huang Y, Zhang C, Luo Y, 2013, A Comparative the Treatment of Osteoporotic Pertrochanteric Fractures--a
Biomechanical Study of Proximal Femoral Nail (InterTAN) Biomechanical Cadaver Study. Injury, 44:802–7.
and Proximal Femoral Nail Antirotation for Intertrochanteric https://doi.org/10.1016/j.injury.2013.03.003
Fractures. Int Orthop, 37:2465–73. 22. Knobe M, Gradl G, Maier KJ, et al., 2013, Rotationally
https://doi.org/10.1007/s00264-013-2120-1 Stable Screw-anchor Versus Sliding Hip Screw Plate Systems
12. Rupprecht M, Grossterlinden L, Sellenschloh K, et al., 2011, in Stable Trochanteric Femur Fractures: A Biomechanical
Internal Fixation of Femoral Neck Fractures with Posterior Evaluation. J Orthop Trauma, 27:e127–36.
Comminution: A Biomechanical Comparison of DHS® and https://doi.org/10.1097/BOT.0b013e318278112a
Intertan Nail®. Int Orthop, 35:1695–701. 23. Bellato E, Kim Y, Fitzsimmons JS, et al., 2017, Coronoid
https://doi.org/10.1007/s00264-010-1199-x Reconstruction using Osteochondral Grafts: A Biomechanical
13. Li J, Han L, Zhang H, et al., 2019, Medial Sustainable Nail Study. J Shoulder Elbow Surg, 26:1794–802.
Versus Proximal Femoral Nail Antirotation in Treating https://doi.org/10.1016/j.jse.2017.05.010
AO/OTA 31-A2.3 Fractures: Finite Element Analysis and 24. Högel F, Hoffmann S, Panzer S, et al., 2013, Biomechanical
Biomechanical Evaluation. Injury, 50:648–56. Comparison of Intramedullar Versus Extramedullar
https://doi.org/10.1016/j.injury.2019.02.008 Stabilization of Intra-articular Tibial Plateau Fractures. Arch
14. Bartel T, Rivard A, Jimenez A, et al., 2018, Medical Orthop Trauma Surg, 133:59–64.
Three-dimensional Printing Opens up New Opportunities https://doi.org/10.1007/s00402-012-1629-x
in Cardiology and Cardiac Surgery. Eur Heart J, 25. Bellato E, Fitzsimmons JS, Kim Y, et al., 2018, Articular
39:1246–54. Contact Area and Pressure in Posteromedial Rotatory
https://doi.org/10.1093/eurheartj/ehx016 Instability of the Elbow. J Bone Joint Surg Am, 100:e34.
15. Prendergast ME, Burdick JA, 2020, Recent Advances in https://doi.org/10.2106/jbjs.16.01321
Enabling Technologies in 3D Printing for Precision Medicine. 26. Gray AB, Alolabi B, Ferreira LM, et al., 2013, The Effect of
Adv Mater, 32:e1902516. a Coronoid Prosthesis on Restoring Stability to the Coronoid-
https://doi.org/10.1002/adma.201902516 deficient Elbow: A Biomechanical Study. J Hand Surg Am,
16. Wang Z, Yang Y, 2021, Application of 3D Printing 38:1753–61.
in Implantable Medical Devices. Biomed Res Int, https://doi.org/10.1016/j.jhsa.2013.05.004
2021:6653967. 27. Jung MK, von Ehrlich-Treuenstätt GVR, Jung AL, et al.,
https://doi.org/10.1155/2021/6653967 2021, Evaluation of External Stabilization of Type II Odontoid
17. Gardner MP, Chong AC, Pollock AG, et al., 2010, Mechanical Fractures in Geriatric Patients-an Experimental Study on a Newly
Evaluation of Large-size Fourth-generation Composite Developed Cadaveric Trauma Model. PLoS One, 16:e0260414.
Femur and Tibia Models. Ann Biomed Eng, 38:613–20. https://doi.org/10.1371/journal.pone.0260414
https://doi.org/10.1007/s10439-009-9887-7 28. Zhang RY, Li JT, Zhao JX, et al., 2022, The Oblique Triangle
18. Heiner A D, 2008, Structural Properties of Fourth-generation Configuration of Three Parallel Screws for Femoral Neck
Composite Femurs and Tibias. J Biomech, 41:3282–4. Fracture Fixation using Computer-aided Design Modules. Sci
https://doi.org/10.1016/j.jbiomech.2008.08.013 Rep, 12:325.
19. Nicayenzi B, Shah S, Schemitsch EH, et al., 2011, The https://doi.org/10.1038/s41598-021-03666-1
Biomechanical Effect of Changes in Cancellous Bone 29. Guo H, Li J, Gao Y, et al., 2021, A Finite Element Study on
International Journal of Bioprinting (2022)–Volume 8, Issue 4 115

