Page 105 - IJB-9-1
P. 105

International Journal of Bioprinting                                        Progress in bioprinting of bone


               after 3D cell bioprinting. PLoS One, 9: e112497.  129. Zhai X, Ruan C, Ma Y, et al., 2018, 3D-bioprinted osteoblast-
                                                                  laden  nanocomposite  hydrogel  constructs  with  induced
               https://doi.org/10.1371/journal.pone.0112497
                                                                  microenvironments promote  cell viability, differentiation,
            121. Heo DN, Alioglu MA, Wu Y, et al., 2020, 3D bioprinting   and osteogenesis both In Vitro and In Vivo. Adv Sci (Weinh),
               of carbohydrazide-modified gelatin into microparticle-  5: 1700550.
               suspended oxidized alginate for the fabrication of complex-     https://doi.org/10.1002/advs.201700550
               shaped tissue constructs.  ACS Appl Mater Interfaces, 12:
               20295–20306.                                    130. Campos DF, Blaeser A, Buellesbach K, et al., 2016, Bioprinting
                                                                  organotypic hydrogels with improved mesenchymal stem
               https://doi.org/10.1021/acsami.0c05096
                                                                  cell  remodeling and  mineralization properties  for bone
            122. Costantini M, Idaszek J, Szöke K, et al., 2016, 3D bioprinting   tissue engineering. Adv Healthc Mater, 5: 1336–1345.
               of bm-mscs-loaded ecm biomimetic hydrogels for in vitro      https://doi.org/10.1002/adhm.201501033
               neocartilage formation. Biofabrication, 8: 035002.
                                                               131. Anada T, Pan CC, Stahl AM, et al., 2019, Vascularized bone-
               https://doi.org/10.1088/1758-5090/8/3/035002
                                                                  mimetic hydrogel constructs by 3D bioprinting to promote
            123. Liu B,  Li J, Lei X, et al., 2020,  3D-bioprinted functional   osteogenesis and angiogenesis. Int J Mol Sci, 20: 1096.
               and biomimetic hydrogel scaffolds incorporated with      https://doi.org/10.3390/ijms20051096
               nanosilicates to promote bone healing in rat calvarial defect
               model. Mater Sci Eng C Mater Biol Appl, 112: 110905.  132. Bernal  PN, Delrot P, Loterie D, et al., 2019, Volumetric
                                                                  bioprinting of complex living-tissue constructs within
               https://doi.org/10.1016/j.msec.2020.110905         seconds. Adv Mater, 31: 1904209.
            124. Chimene D, Miller L, Cross LM, et al., 2020, Nanoengineered   133. Heo DN, Ayan B, Dey M, et al., 2020, Aspiration-assisted
               osteoinductive bioink for 3D bioprinting bone tissue. ACS   bioprinting of co-cultured osteogenic spheroids for bone
               Appl Mater Interfaces, 12: 15976–15988.            tissue engineering. Biofabrication, 13: 015013.
               https://doi.org/10.1021/acsami.9b19037             https://doi.org/10.1088/1758-5090/abc1bf
            125. Sun X, Ma Z, Zhao X, et al., 2021, Three-dimensional   134. Rukavina P, Koch F, Wehrle M, et al., 2020, In Vivo evaluation
               bioprinting of multicell-laden scaffolds containing bone   of bioprinted prevascularized bone tissue. Biotechnol Bioeng,
               morphogenic protein-4 for promoting m2 macrophage   117: 3902-11.
               polarization and accelerating bone defect repair in diabetes
               mellitus. Bioact Mater, 6: 757–769.                https://doi.org/10.1002/bit.27527
               https://doi.org/10.1016/j.bioactmat.2020.08.030  135. Ashammakhi N, Ahadian S, Xu C, et al., 2019, Bioinks
                                                                  and  bioprinting  technologies to make  heterogeneous and
            126. Dubey N, Ferreira JA, Malda J,  et al., 2020, Extracellular   biomimetic tissue constructs. Mater Today Bio, 1: 100008.
               matrix/amorphous magnesium phosphate bioink for 3d
               bioprinting of craniomaxillofacial bone tissue.  ACS Appl      https://doi.org/10.1016/j.mtbio.2019.100008
               Mater Interfaces, 12: 23752–23763.              136. Mercado-Pagán ÁE, Stahl AM, Shanjani Y, et al., 2015,
               https://doi.org/10.1021/acsami.0c05311             Vascularization in bone tissue engineering constructs. Ann
                                                                  Biomed Eng, 43: 718–729.
            127. Sawkins MJ, Mistry P, Brown BN, et al., 2015, Cell and
               protein compatible 3d bioprinting of mechanically strong      https://doi.org/10.1007/s10439-015-1253-3
               constructs for bone repair. Biofabrication, 7: 035004.  137. Ramtani S, 2008, Electro-mechanics of bone remodelling.
                                                                  Int J Eng Sci, 46: 1173–1182.
               https://doi.org/10.1088/1758-5090/7/3/035004
                                                                  https://doi.org/10.1016/j.ijengsci.2008.06.001
            128. Ahlfeld T, Doberenz F, Kilian D, et al., 2018, Bioprinting of
               mineralized  constructs  utilizing  multichannel  plotting  of   138. Moura D, Pereira RF, Gonçalves IC, 2022, Recent advances
               a  self-setting  calcium  phosphate  cement  and  a  cell-laden   on bioprinting of hydrogels containing carbon materials.
               Bioink. Biofabrication, 10: 045002.                Mater Today Chem, 23: 100617.
               https://doi.org/10.1088/1758-5090/aad36d           https://doi.org/10.1016/j.mtchem.2021.100617













            Volume 9 Issue 1 (2023)                         97                      https://doi.org/10.18063/ijb.v9i1.628
   100   101   102   103   104   105   106   107   108   109   110