Page 100 - IJB-9-1
P. 100
International Journal of Bioprinting Progress in bioprinting of bone
7. Florencio-Silva R, Sasso GR, Sasso-Cerri E, et al., 2015, 2017, 3D mimicry of native-tissue-fiber architecture guides
Biology of bone tissue: Structure, function, and factors that tendon-derived cells and adipose stem cells into artificial
influence bone cells. Biomed Res Int, 2015: 421746. tendon constructs. Small, 13: 1700689.
https://doi.org/10.1155/2015/421746 https://doi.org/10.1002/smll.201700689
8. Murugan R, Ramakrishna S, 2005, Development of 22. Nichol JW, Koshy ST, Bae H, et al., 2010, Cell-laden
nanocomposites for bone grafting. Compos Sci Technol, 65: microengineered gelatin methacrylate hydrogels.
2385–2406. Biomaterials, 31: 5536–5544.
9. Bonfield W, Wang M, Tanner K, 1998, Interfaces in analogue https://doi.org/10.1016/j.biomaterials.2010.03.064
biomaterials. Acta Mater, 46: 2509–2518.
23. Yue K, Trujillo-de Santiago G, Alvarez MM, et al., 2015,
10. Atala A, 2000, Tissue engineering for bladder substitution. Synthesis, properties, and biomedical applications of gelatin
World Journal of Urology, 18: 364–370. methacryloyl (GelMA) hydrogels. Biomaterials, 73: 254–271.
https://doi.org/10.1007/s003450000152 https://doi.org/10.1016/j.biomaterials.2015.08.045
11. Melchels F, Domingos M, Klein TJ, et al., 2012, Additive 24. Klotz BJ, Gawlitta D, Rosenberg AJ, et al., 2016, Gelatin-
manufacturing of tissues and organ. Prog Polym Sci, 37: methacryloyl hydrogels: Towards biofabrication-based
1079–1104. tissue repair. Trends Biotechnol, 34: 394–407.
12. Bigham A, Foroughi F, Ghomi ER, et al., 2020, The journey https://doi.org/10.1016/j.tibtech.2016.01.002
of multifunctional bone scaffolds fabricated from traditional 25. D O’Connell C, Di Bella C, Thompson F, et al., 2016,
toward modern techniques. Bio Des Manuf, 3: 281–306.
Development of the biopen: A handheld device for surgical
13. Ashammakhi N, Hasan A, Kaarela O, et al., 2019, Advancing printing of adipose stem cells at a chondral wound site.
frontiers in bone bioprinting. Adv Healthc Mater, 8: 1801048. Biofabrication, 8: 015019.
14. Lee JM, Yeong WY, 2016, Design and printing strategies https://doi.org/10.1088/1758-5090/8/1/015019
in 3D bioprinting of cell-hydrogels: A review. Adv Healthc 26. Evinger AJ, Jeyakumar JM, Hook LA, et al., 2013, Osteogenic
Mater, 5: 2856–2865.
differentiation of mesenchymal stem/stromal cells within
https://doi.org/10.1002/adhm.201600435 3D bioprinted neotissues. FASEB J, 27: 193.
15. Gudapati H, Dey M, Ozbolat I, 2016, A comprehensive 27. Kuss MA, Harms R, Wu S, et al., 2017, Short-term hypoxic
review on droplet-based bioprinting: Past, present and preconditioning promotes prevascularization in 3D
future. Biomaterials, 102: 20–42. bioprinted bone constructs with stromal vascular fraction
derived cells. RSC Adv, 7: 29312–29320.
https://doi.org/10.1016/j.biomaterials.2016.06.012
https://doi.org/10.1039/C7RA04372D
16. Koch L, Gruene M, Unger C, et al., 2013, Laser assisted cell
printing. Curr Pharm Biotechnol, 14: 91–97. 28. Schuurman W, Khristov V, Pot MW, et al., 2011, Bioprinting
of hybrid tissue constructs with tailorable mechanical
17. Guillotin B, Ali M, Ducom A, et al., 2013, Laser-assisted
bioprinting for tissue engineering. In: Forgacs g, sun w, Properties. Biofabrication, 3: 021001.
editors. Biofabrication micro and nano-fabrication printing https://doi.org/10.1088/1758-5082/3/2/021001
patterning assem. Boston: william andrew publishing. 29. Cohen DL, Malone E, Lipson H, et al., 2006, Direct freeform
p95–p118.
fabrication of seeded hydrogels in arbitrary geometries.
18. Ayan B, Heo DN, Zhang Z, et al., 2020, Aspiration-assisted Tissue Eng, 12: 1325–1335.
bioprinting for precise positioning of biologics. Sci Adv, 6: https://doi.org/10.1089/ten.2006.12.1325
eaaw5111.
30. Schagemann J, Chung H, Mrosek E, et al., 2010,
https://doi.org/10.1126/sciadv.aaw5111
Poly-∈-caprolactone/gel hybrid scaffolds for cartilage tissue
19. Lee KY, Mooney DJ, 2012, Alginate: properties and engineering. J Biomed Mater Res A, 93: 454–463.
biomedical applications. Prog Polym Sci, 37: 106–126.
https://doi.org/10.1002/jbm.a.32521
https://doi.org/10.1016/j.progpolymsci.2011.06.003
31. Endres M, Hutmacher D, Salgado A, et al., 2003, Osteogenic
20. Funakoshi T, Majima T, Iwasaki N, et al., 2005, Application induction of human bone marrow-derived mesenchymal
of tissue engineering techniques for rotator cuff regeneration progenitor cells in novel synthetic polymer-hydrogel
using a chitosan-based hyaluronan hybrid fiber scaffold. Am matrices. Tissue Eng, 9: 689–702.
J Sports Med, 33: 1193–1201.
https://doi.org/10.1089/107632703768247386
https://doi.org/10.1177/0363546504272689
32. Park JW, Shin YC, Kang HG, et al., 2021, In Vivo analysis
21. Laranjeira M, Domingues RM, Costa-Almeida R, et al., of post-joint-preserving surgery fracture of 3D-printed
Volume 9 Issue 1 (2023) 92 https://doi.org/10.18063/ijb.v9i1.628

