Page 100 - IJB-9-1
P. 100

International Journal of Bioprinting                                        Progress in bioprinting of bone


            7.   Florencio-Silva R, Sasso GR, Sasso-Cerri E,  et  al., 2015,   2017, 3D mimicry of native-tissue-fiber architecture guides
               Biology of bone tissue: Structure, function, and factors that   tendon-derived cells and adipose stem cells into artificial
               influence bone cells. Biomed Res Int, 2015: 421746.  tendon constructs. Small, 13: 1700689.
               https://doi.org/10.1155/2015/421746                https://doi.org/10.1002/smll.201700689
            8.   Murugan  R,  Ramakrishna  S,  2005, Development  of   22.  Nichol JW, Koshy ST, Bae H, et al., 2010, Cell-laden
               nanocomposites for bone grafting. Compos Sci Technol, 65:   microengineered  gelatin  methacrylate  hydrogels.
               2385–2406.                                         Biomaterials, 31: 5536–5544.
            9.   Bonfield W, Wang M, Tanner K, 1998, Interfaces in analogue      https://doi.org/10.1016/j.biomaterials.2010.03.064
               biomaterials. Acta Mater, 46: 2509–2518.
                                                               23.  Yue K, Trujillo-de Santiago G, Alvarez MM, et al., 2015,
            10.  Atala A, 2000, Tissue engineering for bladder substitution.   Synthesis, properties, and biomedical applications of gelatin
               World Journal of Urology, 18: 364–370.             methacryloyl (GelMA) hydrogels. Biomaterials, 73: 254–271.
               https://doi.org/10.1007/s003450000152              https://doi.org/10.1016/j.biomaterials.2015.08.045
            11.  Melchels F, Domingos M, Klein TJ,  et  al., 2012, Additive   24.  Klotz BJ, Gawlitta D, Rosenberg AJ, et al., 2016, Gelatin-
               manufacturing of tissues and organ.  Prog Polym Sci, 37:   methacryloyl hydrogels: Towards biofabrication-based
               1079–1104.                                         tissue repair. Trends Biotechnol, 34: 394–407.
            12.  Bigham A, Foroughi F, Ghomi ER, et al., 2020, The journey      https://doi.org/10.1016/j.tibtech.2016.01.002
               of multifunctional bone scaffolds fabricated from traditional   25.  D O’Connell C, Di Bella C, Thompson F, et al., 2016,
               toward modern techniques. Bio Des Manuf, 3: 281–306.
                                                                  Development of the biopen: A handheld device for surgical
            13.  Ashammakhi N, Hasan A, Kaarela O, et al., 2019, Advancing   printing of adipose stem cells at a chondral wound site.
               frontiers in bone bioprinting. Adv Healthc Mater, 8: 1801048.  Biofabrication, 8: 015019.
            14.  Lee JM, Yeong WY, 2016, Design and printing strategies      https://doi.org/10.1088/1758-5090/8/1/015019
               in 3D bioprinting of cell-hydrogels: A review. Adv Healthc   26.  Evinger AJ, Jeyakumar JM, Hook LA, et al., 2013, Osteogenic
               Mater, 5: 2856–2865.
                                                                  differentiation  of  mesenchymal  stem/stromal  cells  within
               https://doi.org/10.1002/adhm.201600435             3D bioprinted neotissues. FASEB J, 27: 193.
            15.  Gudapati H, Dey M, Ozbolat I, 2016, A comprehensive   27.  Kuss MA, Harms R, Wu S, et al., 2017, Short-term hypoxic
               review on droplet-based bioprinting: Past, present and   preconditioning promotes  prevascularization in 3D
               future. Biomaterials, 102: 20–42.                  bioprinted bone constructs with stromal vascular fraction
                                                                  derived cells. RSC Adv, 7: 29312–29320.
               https://doi.org/10.1016/j.biomaterials.2016.06.012
                                                                  https://doi.org/10.1039/C7RA04372D
            16.  Koch L, Gruene M, Unger C, et al., 2013, Laser assisted cell
               printing. Curr Pharm Biotechnol, 14: 91–97.     28.  Schuurman W, Khristov V, Pot MW, et al., 2011, Bioprinting
                                                                  of hybrid tissue constructs with tailorable mechanical
            17.  Guillotin B, Ali M, Ducom A, et al., 2013, Laser-assisted
               bioprinting for tissue engineering. In: Forgacs g, sun  w,   Properties. Biofabrication, 3: 021001.
               editors. Biofabrication micro and nano-fabrication printing      https://doi.org/10.1088/1758-5082/3/2/021001
               patterning assem. Boston: william andrew publishing.   29.  Cohen DL, Malone E, Lipson H, et al., 2006, Direct freeform
               p95–p118.
                                                                  fabrication of seeded hydrogels in arbitrary geometries.
            18.  Ayan B, Heo DN, Zhang Z, et al., 2020, Aspiration-assisted   Tissue Eng, 12: 1325–1335.
               bioprinting for precise positioning of biologics. Sci Adv, 6:      https://doi.org/10.1089/ten.2006.12.1325
               eaaw5111.
                                                               30.  Schagemann  J,  Chung  H,  Mrosek  E, et al.,  2010,
               https://doi.org/10.1126/sciadv.aaw5111
                                                                    Poly-∈-caprolactone/gel hybrid scaffolds for cartilage tissue
            19.  Lee  KY,  Mooney  DJ,  2012,  Alginate:  properties  and   engineering. J Biomed Mater Res A, 93: 454–463.
               biomedical applications. Prog Polym Sci, 37: 106–126.
                                                                  https://doi.org/10.1002/jbm.a.32521
               https://doi.org/10.1016/j.progpolymsci.2011.06.003
                                                               31.  Endres M, Hutmacher D, Salgado A, et al., 2003, Osteogenic
            20.  Funakoshi T, Majima T, Iwasaki N, et al., 2005, Application   induction  of  human  bone  marrow-derived  mesenchymal
               of tissue engineering techniques for rotator cuff regeneration   progenitor cells in novel synthetic polymer-hydrogel
               using a chitosan-based hyaluronan hybrid fiber scaffold. Am   matrices. Tissue Eng, 9: 689–702.
               J Sports Med, 33: 1193–1201.
                                                                  https://doi.org/10.1089/107632703768247386
               https://doi.org/10.1177/0363546504272689
                                                               32.  Park JW, Shin YC, Kang HG, et al., 2021, In Vivo analysis
            21.  Laranjeira  M,  Domingues  RM, Costa-Almeida R, et al.,   of post-joint-preserving surgery fracture of 3D-printed


            Volume 9 Issue 1 (2023)                         92                      https://doi.org/10.18063/ijb.v9i1.628
   95   96   97   98   99   100   101   102   103   104   105