Page 104 - IJB-9-1
P. 104

International Journal of Bioprinting                                        Progress in bioprinting of bone


               https://doi.org/10.1016/j.yexcr.2006.02.007     110. Loozen LD, Wegman F, Öner FC, et al., 2013, Porous
                                                                  bioprinted constructs in bmp-2 non-viral gene therapy for
            99.  Haque N, Rahman MT, Abu Kasim NH, et al., 2013, Hypoxic
               culture conditions as a solution for mesenchymal stem cell   bone tissue engineering. J Mater Chem B, 1: 6619–6626.
               based regenerative Therapy.  ScientificWorldJournal, 2013:      https://doi.org/10.1039/C3TB21093F
               632972.
                                                               111. Cunniffe GM, Gonzalez-Fernandez T, Daly A, et al.,
               https://doi.org/10.1155/2013/632972                2017, Three-dimensional  bioprinting  of  polycaprolactone
            100. Baldwin J, Antille M, Bonda U, et al., 2014, In Vitro pre-  reinforced gene activated bioinks for bone tissue engineering.
               vascularisation of tissue-engineered constructs a co-culture   Tissue Eng Part A, 23: 891–900.
               perspective. Vasc Cell, 6: 13.                     https://doi.org/10.1089/ten.tea.2016.0498
               https://doi.org/10.1186/2045-824X-6-13          112.  Cidonio G, Alcala-Orozco CR, Lim KS, et al., 2019, Osteogenic
                                                                  and angiogenic tissue formation in high fidelity nanocomposite
            101. Tufro-McReddie A, Norwood V, Aylor K, et al., 1997,
               Oxygen regulates vascular endothelial growth factor-  laponite-gelatin bioinks. Biofabrication, 11: 035027.
               mediated vasculogenesis and tubulogenesis. Dev Biol, 183:      https://doi.org/10.1088/1758-5090/ab19fd
               139–149.
                                                               113. Cidonio G, Glinka M, Kim YH, et al., 2020, Nanoclay-based
               https://doi.org/10.1006/dbio.1997.8513             3D printed scaffolds promote vascular ingrowth  ex vivo
            102. Shweiki D, Itin A, Soffer D, et al., 1992, Vascular endothelial   and  generate  bone  mineral  tissue  In Vitro  and  In Vivo.
               growth  factor  induced  by  hypoxia  may  mediate  hypoxia-  Biofabrication, 12: 035010.
               initiated angiogenesis. Nature, 359: 843–845.      https://doi.org/10.1088/1758-5090/ab8753
               https://doi.org/10.1038/359843a0                114. Sun J, Tan H, 2013, Alginate-based biomaterials for
            103. Sikavitsas VI, Temenoff JS, Mikos AG, 2001, biomaterials and   regenerative medicine applications.  Materials (Basel), 6:
               bone mechanotransduction. Biomaterials, 22: 2581–2593.  1285–1309.
               https://doi.org/10.1016/s0142-9612(01)00002-3      https://doi.org/10.3390/ma6041285
            104. Rubin J, Rubin C, Jacobs CR, 2006, Molecular pathways   115. Araiza-Verduzco F, Rodríguez-Velázquez E, Cruz H,
               mediating mechanical signaling in bone. Gene, 367: 1–16.  et al., 2020, Photocrosslinked alginate-methacrylate
                                                                  hydrogels with modulable mechanical properties: Effect
               https://doi.org/10.1016/j.gene.2005.10.028         of the molecular conformation and electron density of the
            105. Weinbaum S, Cowin S, Zeng Y, 1994, A model for the   methacrylate reactive group. Materials (Basel), 13: 534.
               excitation of osteocytes by mechanical loading-induced      https://doi.org/10.3390/ma13030534
               bone fluid shear stresses. J Biomech, 27: 339–360.
                                                               116. Wu Y, Hospodiuk M, Peng W, et al., 2018, Porous tissue
               https://doi.org/10.1016/0021-9290(94)90010-8       strands: Avascular building blocks for scalable tissue
            106. Yeatts AB, Fisher JP, 2011, Bone tissue engineering   fabrication. Biofabrication, 11: 015009.
               bioreactors: Dynamic culture and the influence of shear      https://doi.org/10.1088/1758-5090/aaec22
               Stress. Bone, 48: 171–181.
                                                               117. Wehrle M, Koch F, Zimmermann S, et al., 2019, Examination
               https://doi.org/10.1016/j.bone.2010.09.138         of hydrogels and mesenchymal stem cell sources for
            107. Bilodeau K, Mantovani D, 2006, Bioreactors for tissue   bioprinting of artificial osteogenic tissues. Cell Mol Bioeng,
               engineering: focus on mechanical constraints. A comparative   12: 583–597.
               review. Tissue Eng, 12: 2367–2383.              118. Chiesa I, De Maria C, Lapomarda A, et al., 2020, Endothelial
               https://doi.org/10.1089/ten.2006.12.2367           cells support osteogenesis in an in vitro vascularized bone
                                                                  model developed by 3D bioprinting.  Biofabrication, 12:
            108. Bancroft GN, Sikavitsas VI, van den Dolder J, et al., 2002,   025013.
               Fluid flow increases mineralized matrix deposition in
               3D perfusion culture of marrow stromal osteoblasts in      https://doi.org/10.1088/1758-5090/ab6a1d
               a dose-dependent manner.  Proc Natl Acad Sci U S A, 99:   119. Kim H, Yang GH, Choi CH, et al., 2018, Gelatin/PVA scaffolds
               12600–12605.
                                                                  fabricated using a 3d-printing process employed with a low-
               https://doi.org/10.1073/pnas.202296599             temperature plate for hard tissue regeneration: fabrication
                                                                  and characterizations. Int J Biol Macromol, 120: 119–127.
            109. Bancroft GN, Sikavitsas VI, Mikos AG, 2003, Design of a
               flow perfusion bioreactor system for bone tissue-engineering      https://doi.org/10.1016/j.ijbiomac.2018.07.159
               applications. Tissue Eng, 9: 549–554.
                                                               120. Wang X, Tolba E, Schröder HC, et al., 2014, Effect of bioglass
               https://doi.org/10.1089/107632703322066723         on growth and biomineralization of saos-2 cells in hydrogel


            Volume 9 Issue 1 (2023)                         96                      https://doi.org/10.18063/ijb.v9i1.628
   99   100   101   102   103   104   105   106   107   108   109