Page 135 - IJB-9-1
P. 135

International Journal of Bioprinting                     Fabrication of 3D breast tumor model for drug screening



            7.   Ng WL, Chua CK, Shen Y-F, 2019, Print me an organ! Why   conjugated bioactive peptides influence endothelial cell
               we are not there yet. Prog Polym Sci, 97: 101145.  behavior. Biomaterials, 201: 99–112.
               https://doi.org/10.1016/j.progpolymsci.2019.101145  https://doi.org/10.1016/j.biomaterials.2019.02.001
            8.   Ma L, Li Y, Wu Y, et al., 2020, The construction of in vitro   20.  Estrada MF, Rebelo SP, Davies EJ, et al., 2016, Modelling the
               tumor models based  on  3D bioprinting.  Bio-Des  Manuf,   tumour microenvironment in long-term microencapsulated
               3(3): 227–236.                                     3D co-cultures recapitulates phenotypic features of disease
               https://doi.org/10.1007/s42242-020-00068-6         progression. Biomaterials, 78: 50–61.
            9.   Mao S, Pang Y, Liu T, et al., 2020, Bioprinting of in vitro   https://doi.org/10.1016/j.biomaterials.2015.11.030
               tumor models for personalized cancer treatment: a review.   21.  Xu K, Wang Z, Copland JA, et al., 2020, 3D porous
               Biofabrication, 12(4): 042001.
                                                                  chitosan-chondroitin sulfate  scaffolds  promote epithelial
               https://doi.org/10.1088/1758-5090/ab97c0           to mesenchymal transition in prostate cancer cells.
            10.  Xie F, Sun L, Pang Y, et al., 2021, Three-dimensional bio-  Biomaterials, 254: 120126.
               printing of primary human hepatocellular carcinoma for   https://doi.org/10.1016/j.biomaterials.2020.120126
               personalized medicine. Biomaterials, 265: 120416.
                                                               22.  Choi S, Friedrichs J, Song YH, et al., 2019, Intrafibrillar,
               https://doi.org/10.1016/j.biomaterials.2020.120416  bone-mimetic collagen mineralization regulates breast
            11.  Bahcecioglu G, Basara G, Ellis BW, et al., 2020, Breast   cancer cell adhesion and migration.  Biomaterials, 198:
               cancer models: Engineering the tumor microenvironment.   95–106.
               Acta Biomater, 106: 1–21.                          https://doi.org/10.1016/j.biomaterials.2018.05.002
               https://doi.org/10.1016/j.actbio.2020.02.006
                                                               23.  Alabi BR, Laranger R, Shay JW, 2019, Decellularized mice
            12.  Jiang  T,  Munguia-Lopez  JG,  Flores-Torres  S, et al.,  2019,   colons as models to study the contribution of the extracellular
               Extrusion bioprinting of soft materials: An emerging   matrix to cell behavior and colon cancer progression. Acta
               technique for biological model fabrication. Appl Phys Rev,   Biomater, 100: 213–222.
               6(1): 011310.
                                                                  https://doi.org/10.1016/j.actbio.2019.09.033
               https://doi.org/10.1063/1.5059393
                                                               24.  Suo A, Xu W, Wang Y, et al., 2019, Dual-degradable and
            13.  Li X, Liu B, Pei B, et al., 2020, Inkjet bioprinting of   injectable hyaluronic acid hydrogel mimicking extracellular
               biomaterials. Chem Rev, 120(19): 10793–10833.      matrix for 3D culture of breast cancer MCF-7 cells.
               https://doi.org/10.1021/acs.chemrev.0c00008        Carbohydr Polym, 211: 336–348.
            14.  Ng WL, Lee JM, Zhou M, et al., 2020, Vat polymerization-  https://doi.org/10.1016/j.carbpol.2019.01.115
               based bioprinting-process, materials, applications and   25.  Zhang T, Zhang Q, Chen J,  et  al., 2014, The controllable
               regulatory challenges. Biofabrication, 12(2): 022001.
                                                                  preparation of porous PLGA microspheres by the oil/
               https://doi.org/10.1088/1758-5090/ab6034           water emulsion method and its application in 3D culture of
            15.  Oztan YC, Nawafleh N, Zhou Y, et al., 2020, Recent   ovarian cancer cells. Colloids Surf Physicochem Eng Aspects,
               advances on utilization of bioprinting for tumor modeling.   452: 115–124.
               Bioprinting, 18: e00079.                           https://doi.org/10.1016/j.colsurfa.2014.03.085
               https://doi.org/10.1016/j.bprint.2020.e00079    26.  Ariadna G-P, Marc R, Teresa P, et al., 2016, Optimization
            16.  Mazza G, Telese A, Al-Akkad W, et al., 2019, Cirrhotic   of poli(ɛ-caprolactone) scaffolds suitable for 3D cancer cell
               human liver extracellular matrix 3d scaffolds promote smad-  culture. Procedia CIRP, 49: 61–66.
               dependent tgf-beta1 epithelial mesenchymal transition.   https://doi.org/10.1016/j.procir.2015.07.031
               Cells, 9(1): 83.
                                                               27.  Wang C, Li J, Sinha S, et al., 2019, Mimicking brain tumor-
               https://doi.org/10.3390/cells9010083
                                                                  vasculature microanatomical architecture via co-culture
            17.  Hoshiba T, 2019, Decellularized extracellular matrix for   of brain tumor and endothelial cells in 3D hydrogels.
               cancer research. Materials (Basel), 12(8): 1311.   Biomaterials, 202: 35–44.
               https://doi.org/10.3390/ma12081311                 https://doi.org/10.1016/j.biomaterials.2019.02.024
            18.  Kabirian F, Mozafari M, 2020, Decellularized ECM-derived   28.  Ferreira LP, Gaspar VM, Mano JF, 2020, Decellularized
               bioinks: Prospects for the future. Methods, 171: 108–118.  extracellular matrix for bioengineering physiomimetic 3D
               https://doi.org/10.1016/j.ymeth.2019.04.019        in vitro tumor  models.  Trends Biotechnol, 38(12):  1397–
                                                                  1414.
            19.  Su J, Satchell SC, Wertheim JA, et al., 2019, Poly(ethylene
               glycol)-crosslinked gelatin hydrogel substrates with   https://doi.org/10.1016/j.tibtech.2020.04.006


            Volume 9 Issue 1 (2023)                        127                      https://doi.org/10.18063/ijb.v9i1.630
   130   131   132   133   134   135   136   137   138   139   140