Page 135 - IJB-9-1
P. 135
International Journal of Bioprinting Fabrication of 3D breast tumor model for drug screening
7. Ng WL, Chua CK, Shen Y-F, 2019, Print me an organ! Why conjugated bioactive peptides influence endothelial cell
we are not there yet. Prog Polym Sci, 97: 101145. behavior. Biomaterials, 201: 99–112.
https://doi.org/10.1016/j.progpolymsci.2019.101145 https://doi.org/10.1016/j.biomaterials.2019.02.001
8. Ma L, Li Y, Wu Y, et al., 2020, The construction of in vitro 20. Estrada MF, Rebelo SP, Davies EJ, et al., 2016, Modelling the
tumor models based on 3D bioprinting. Bio-Des Manuf, tumour microenvironment in long-term microencapsulated
3(3): 227–236. 3D co-cultures recapitulates phenotypic features of disease
https://doi.org/10.1007/s42242-020-00068-6 progression. Biomaterials, 78: 50–61.
9. Mao S, Pang Y, Liu T, et al., 2020, Bioprinting of in vitro https://doi.org/10.1016/j.biomaterials.2015.11.030
tumor models for personalized cancer treatment: a review. 21. Xu K, Wang Z, Copland JA, et al., 2020, 3D porous
Biofabrication, 12(4): 042001.
chitosan-chondroitin sulfate scaffolds promote epithelial
https://doi.org/10.1088/1758-5090/ab97c0 to mesenchymal transition in prostate cancer cells.
10. Xie F, Sun L, Pang Y, et al., 2021, Three-dimensional bio- Biomaterials, 254: 120126.
printing of primary human hepatocellular carcinoma for https://doi.org/10.1016/j.biomaterials.2020.120126
personalized medicine. Biomaterials, 265: 120416.
22. Choi S, Friedrichs J, Song YH, et al., 2019, Intrafibrillar,
https://doi.org/10.1016/j.biomaterials.2020.120416 bone-mimetic collagen mineralization regulates breast
11. Bahcecioglu G, Basara G, Ellis BW, et al., 2020, Breast cancer cell adhesion and migration. Biomaterials, 198:
cancer models: Engineering the tumor microenvironment. 95–106.
Acta Biomater, 106: 1–21. https://doi.org/10.1016/j.biomaterials.2018.05.002
https://doi.org/10.1016/j.actbio.2020.02.006
23. Alabi BR, Laranger R, Shay JW, 2019, Decellularized mice
12. Jiang T, Munguia-Lopez JG, Flores-Torres S, et al., 2019, colons as models to study the contribution of the extracellular
Extrusion bioprinting of soft materials: An emerging matrix to cell behavior and colon cancer progression. Acta
technique for biological model fabrication. Appl Phys Rev, Biomater, 100: 213–222.
6(1): 011310.
https://doi.org/10.1016/j.actbio.2019.09.033
https://doi.org/10.1063/1.5059393
24. Suo A, Xu W, Wang Y, et al., 2019, Dual-degradable and
13. Li X, Liu B, Pei B, et al., 2020, Inkjet bioprinting of injectable hyaluronic acid hydrogel mimicking extracellular
biomaterials. Chem Rev, 120(19): 10793–10833. matrix for 3D culture of breast cancer MCF-7 cells.
https://doi.org/10.1021/acs.chemrev.0c00008 Carbohydr Polym, 211: 336–348.
14. Ng WL, Lee JM, Zhou M, et al., 2020, Vat polymerization- https://doi.org/10.1016/j.carbpol.2019.01.115
based bioprinting-process, materials, applications and 25. Zhang T, Zhang Q, Chen J, et al., 2014, The controllable
regulatory challenges. Biofabrication, 12(2): 022001.
preparation of porous PLGA microspheres by the oil/
https://doi.org/10.1088/1758-5090/ab6034 water emulsion method and its application in 3D culture of
15. Oztan YC, Nawafleh N, Zhou Y, et al., 2020, Recent ovarian cancer cells. Colloids Surf Physicochem Eng Aspects,
advances on utilization of bioprinting for tumor modeling. 452: 115–124.
Bioprinting, 18: e00079. https://doi.org/10.1016/j.colsurfa.2014.03.085
https://doi.org/10.1016/j.bprint.2020.e00079 26. Ariadna G-P, Marc R, Teresa P, et al., 2016, Optimization
16. Mazza G, Telese A, Al-Akkad W, et al., 2019, Cirrhotic of poli(ɛ-caprolactone) scaffolds suitable for 3D cancer cell
human liver extracellular matrix 3d scaffolds promote smad- culture. Procedia CIRP, 49: 61–66.
dependent tgf-beta1 epithelial mesenchymal transition. https://doi.org/10.1016/j.procir.2015.07.031
Cells, 9(1): 83.
27. Wang C, Li J, Sinha S, et al., 2019, Mimicking brain tumor-
https://doi.org/10.3390/cells9010083
vasculature microanatomical architecture via co-culture
17. Hoshiba T, 2019, Decellularized extracellular matrix for of brain tumor and endothelial cells in 3D hydrogels.
cancer research. Materials (Basel), 12(8): 1311. Biomaterials, 202: 35–44.
https://doi.org/10.3390/ma12081311 https://doi.org/10.1016/j.biomaterials.2019.02.024
18. Kabirian F, Mozafari M, 2020, Decellularized ECM-derived 28. Ferreira LP, Gaspar VM, Mano JF, 2020, Decellularized
bioinks: Prospects for the future. Methods, 171: 108–118. extracellular matrix for bioengineering physiomimetic 3D
https://doi.org/10.1016/j.ymeth.2019.04.019 in vitro tumor models. Trends Biotechnol, 38(12): 1397–
1414.
19. Su J, Satchell SC, Wertheim JA, et al., 2019, Poly(ethylene
glycol)-crosslinked gelatin hydrogel substrates with https://doi.org/10.1016/j.tibtech.2020.04.006
Volume 9 Issue 1 (2023) 127 https://doi.org/10.18063/ijb.v9i1.630

