Page 136 - IJB-9-1
P. 136

International Journal of Bioprinting                      Fabrication of 3D breast tumor model for drug screening



            29.  Zhao L, Huang L, Yu S, et al., 2017, Decellularized tongue   39.  Du J, Hu X, Su Y, et al., 2022, Gelatin/sodium alginate
               tissue as an in vitro model for studying tongue cancer and   hydrogel-coated decellularized porcine coronary artery to
               tongue regeneration. Acta Biomater, 58: 122–135.   construct bilayer tissue engineered blood vessels. Int J Biol
                                                                  Macromol, 209: 2070–2083.
               https://doi.org/10.1016/j.actbio.2017.05.062
                                                                  https://doi.org/10.1016/j.ijbiomac.2022.04.188
            30.  Narkhede AA, Shevde LA, Rao SS, 2017, Biomimetic
               strategies to recapitulate organ specific microenvironments   40.  Coronado RE, Somaraki-Cormier M, Natesan S, et al., 2018,
               for studying breast cancer metastasis. Int J Cancer, 141(6):   Decellularization and solubilization of porcine liver for use
               1091–1109.                                         as a substrate for porcine hepatocyte culture. Cell Transplant,
                                                                  26(12): 1840–1854.
               https://doi.org/10.1002/ijc.30748
                                                                  https://doi.org/10.1177/0963689717742157
            31.  Lang R, Stern MM, Smith L, et al., 2011, Three-dimensional
               culture of hepatocytes on porcine liver tissue-derived   41.  Abaci A, Guvendiren M, 2020, Designing decellularized
               extracellular matrix. Biomaterials, 32(29): 7042–7052.  extracellular matrix-based bioinks for 3D bioprinting. Adv
                                                                  Healthc Mater, 9(24): e2000734.
               https://doi.org/10.1016/j.biomaterials.2011.06.005
                                                                  https://doi.org/10.1002/adhm.202000734
            32.  Zhao F, Cheng J, Sun M, et al., 2020, Digestion degree is
               a key factor to regulate the printability of pure tendon   42.  Sellaro TL, Ranade A, Faulk DM, et al., 2010, Maintenance
               decellularized extracellular matrix bio-ink in extrusion-  of  human  hepatocyte  function  in  vitro  by  liver-derived
               based 3D cell printing. Biofabrication, 12(4): 045011.  extracellular matrix gels.  Tissue  Eng  Part  A, 16(3): 1075–
                                                                  1082.
               https://doi.org/10.1088/1758-5090/aba411
                                                                  https://doi.org/10.1089/ten.tea.2008.0587
            33.  Pati F, Jang J, Ha DH, et al., 2014, Printing three-dimensional
               tissue analogues with decellularized extracellular matrix   43.  Saleh T, Ahmed E, Yu L, et al., 2018, Silver nanoparticles
               bioink. Nat Commun, 5: 3935.                       improve structural stability and biocompatibility of
                                                                  decellularized porcine liver. Artif Cells Nanomed Biotechnol,
               https://doi.org/10.1038/ncomms4935
                                                                  46(sup2): 273–284.
            34.  Xu J, Fang H, Zheng S, et al., 2021, A biological functional
               hybrid scaffold based on decellularized extracellular matrix/  https://doi.org/10.1080/21691401.2018.1457037
               gelatin/chitosan with high biocompatibility and antibacterial   44.  Wu Q, Bao J, Zhou YJ, et al., 2015, Optimizing perfusion-
               activity for skin tissue engineering. Int J Biol Macromol, 187:   decellularization methods of porcine livers for clinical-scale
               840–849.                                           whole-organ bioengineering. Biomed Res Int, 2015: 785474.
               https://doi.org/10.1016/j.ijbiomac.2021.07.162     https://doi.org/10.1155/2015/785474
            35.  Kim BS, Kwon YW, Kong JS, et al., 2018, 3D cell printing of in   45.  Poornejad N, Nielsen JJ, Morris RJ, et al., 2016, Comparison
               vitro stabilized skin model and in vivo pre-vascularized skin   of  four  decontamination  treatments  on  porcine  renal
               patch using tissue-specific extracellular matrix bioink: A   decellularized extracellular matrix structure, composition,
               step towards advanced skin tissue engineering. Biomaterials,   and support of human renal cortical tubular epithelium
               168: 38–53.                                        cells. J Biomater Appl, 30(8): 1154–1167.
               https://doi.org/10.1016/j.biomaterials.2018.03.040  https://doi.org/10.1177/0885328215615760
            36.  Kim J, Shim IK, Hwang DG, et al., 2019, 3D cell printing   46.  Struecker B, Hillebrandt KH, Voitl R, et al., 2015, Porcine
               of islet-laden pancreatic tissue-derived extracellular matrix   liver decellularization under oscillating pressure conditions:
               bioink constructs for enhancing pancreatic functions.  J   A technical refinement to improve the homogeneity of the
               Mater Chem B, 7(10): 1773–1781.                    decellularization process. Tissue Eng Part C Methods, 21(3):
                                                                  303–313.
               https://doi.org/10.1039/c8tb02787k
                                                                  https://doi.org/10.1089/ten.TEC.2014.0321
            37.  Xu J, Fang H, Su Y, et al., 2022, A 3D bioprinted
               decellularized  extracellular  matrix/gelatin/quaternized  47.  Sun D, Liu Y, Wang H, et al., 2018, Novel decellularized
               chitosan scaffold assembling with poly(ionic liquid)s for   liver matrix-alginate hybrid gel beads for the 3D culture
               skin tissue engineering. Int J Biol Macromol, 220: 1253–1266.  of hepatocellular carcinoma cells. Int J Biol Macromol, 109:
                                                                  1154–1163.
               https://doi.org/10.1016/j.ijbiomac.2022.08.149
                                                                  https://doi.org/10.1016/j.ijbiomac.2017.11.103
            38.  Zhang Y, Yuan B, Zhang Y, et al., 2020, Biomimetic lignin/
               poly(ionic liquids) composite hydrogel dressing with   48.  Hu X, Li W, Li L, et al., 2019, A biomimetic cartilage gradient
               excellent mechanical strength, self-healing properties, and   hybrid scaffold for functional tissue engineering of cartilage.
               reusability. Chem Eng J, 400: 125984.              Tissue Cell, 58: 84–92.
               https://doi.org/10.1016/j.cej.2020.125984          https://doi.org/10.1016/j.tice.2019.05.001


            Volume 9 Issue 1 (2023)                        128                      https://doi.org/10.18063/ijb.v9i1.630
   131   132   133   134   135   136   137   138   139   140   141