Page 164 - IJB-9-1
        P. 164
     International Journal of Bioprinting                             Bio-inks for 3D printing cell microenvironment
            References                                         16.  Dey M, Ozbolat IT, 2020, 3D bioprinting of cells, tissues and
                                                                  organs, Sci Rep. 10(1): 14023.
            1.   Song H-HG, Rumma RT, Ozaki CK, et al., 2018, Vascular   17.  Janmey PA, 1998, The cytoskeleton and cell signaling:
               tissue  engineering:  Progress,  challenges,  and  clinical   Component localization and mechanical coupling. Physiol
               promise. Cell Stem Cell, 22(3): 340–354.           Rev, 78(3): 763–781.
            2.   Khademhosseini A, Langer R, 2016, A decade of progress in   18.  Fletcher  DA, Mullins  RD,  2010,  Cell  mechanics  and  the
               tissue engineering. Nat Protoc, 11(10): 1775–1781.  cytoskeleton. Nature, 463(7280): 485–492.
            3.   Zhang P, Zhang C, Li J, et al., 2019, The physical   19.  Fishkind DJ, Wang Y-l, 1995, New horizons for cytokinesis.
               microenvironment of hematopoietic stem cells and its   Curr Opin Cell Biol, 7(1): 23–31.
               emerging roles in engineering applications.  Stem Cell Res
               Ther, 10(1): 327.                               20.  Stossel TP, 1994, The machinery of cell crawling. Sci Am,
                                                                  271(3): 54–55, 58–63.
            4.   Xing F, Li L, Zhou C, et al., 2019, Regulation and
               directing  stem  cell  fate  by  tissue  engineering  functional   21.  Damania D, Subramanian H, Tiwari AK, et al., 2010, Role of
               microenvironments: Scaffold physical and chemical cues.   cytoskeleton in controlling the disorder strength of cellular
               Stem Cells Int, 2019: 2180925.                     nanoscale architecture, Biophys J, 99(3): 989–996.
            5.   Agrawal A, Suryakumar G, Rathor R, 2018, Role of defective   22.  Janmey P, 1995,  Structure and Dynamics of Membranes,
               Ca  signaling in skeletal muscle weakness: Pharmacological   Elsevier Sci, North Holland, 114–717.
                 2+
               implications, J Cell Commun Signal, 12(4): 645–659.  23.  Dupont S, Morsut L, Aragona M, et al., 2011, Role of YAP/
            6.   Vandenburgh HH, 1987, Motion into mass: How does   TAZ in mechanotransduction. Nature, 474(7350): 179–183.
               tension stimulate muscle growth?  Med Sci Sports Exerc,   24.  Owens DJ, Messéant J, Moog S, et al., 2020, Lamin-related
               19(5): S142–9.                                     congenital muscular dystrophy alters mechanical signaling
            7.   Emon B, Bauer J, Jain Yasna, et al., 2018, Biophysics of tumor   and skeletal muscle growth. Int J Mol Sci, 22(1): 306.
               microenvironment and cancer metastasis—A mini review.   25.  Parreno J, Raju S, Wu P-H, et al., 2017, MRTF-A signaling
               Comput Struct Biotechnol J, 16: 279–287.           regulates the acquisition of the contractile  phenotype in
            8.   Mierke CT, 2019, The matrix environmental and cell   dedifferentiated chondrocytes. Mat Bio J Intl Soc Mat Bio,
               mechanical properties regulate cell migration and contribute   62: 3–14.
               to the invasive phenotype of cancer cells.  Rep Prog Phys,   26.  Kim N-G, Koh E, Chen X, et al., 2011, E-cadherin mediates
               82(6): 64602.                                      contact inhibition of proliferation through hippo signaling-
            9.   Engler AJ, Sen S, Sweeney HL, et al., 2006, Matrix elasticity   pathway components.  Proc  Natl  Acad Sci  USA, 108(29):
               directs stem cell lineage specification. Cell, 126(4): 677–689.  11930–11935.
            10.  Qiu Y, Ciciliano J, Myers DR, et al., 2015, Platelets and   27.  Rando TA, 2001, The dystrophin-glycoprotein complex,
               physics: How platelets “feel” and respond to their mechanical   cellular signaling, and the regulation of cell survival in the
               microenvironment. Blood Rev, 29(6): 377–386.       muscular dystrophies. Musl Nerve, 24(12): 1575–1594.
            11.  Fontoura JC, Viezzer C, Santos FGDS, et al., 2020,   28.  Guimarães CF, Gasperini L, Marques AP, et al., 2020, The
               Comparison of 2D and 3D cell culture models for cell   stiffness of  living tissues  and  its implications  for  tissue
               growth, gene expression and drug resistance. Mater Sci Eng   engineering. Nat Rev Mater, 5(5): 351–370.
               C Mater Sci Eng App, 107: 110264.               29.  Rho JY, Ashman RB, Turner CH, 1993, Young’s modulus
            12.  Derakhshanfar S, Mbeleck R, Xu K, et al., 2018, 3D   of trabecular and cortical bone material: Ultrasonic and
               bioprinting for biomedical devices and tissue engineering:   microtensile measurements. J Biomech, 26(2): 111–119.
               A review of recent trends and advances. Bioact Mater, 3(2):   30.  Sotres J, Jankovskaja S, Wannerberger K, et al., 2017, Ex-
               144–156.                                           vivo force spectroscopy of intestinal mucosa reveals the
            13.  Yang H, Yang K-H, Narayan RJ,  et al., 2021, Laser-based   mechanical properties of mucus blankets.  Sci Rep, 7(1):
               bioprinting for multilayer cell patterning in tissue engineering   7270.
               and cancer research. Essays Biochem, 65(3): 409–416.  31.  Masuzaki R, Tateishi R, Yoshida H, et al., 2007, Assessing
            14.  Ouyang L, 2022, Pushing the rheological and mechanical   liver tumor stiffness by transient elastography. Hepatol Int,
               boundaries of extrusion-based 3D bioprinting.  Trends   1(3): 394–397.
               Biotechnol, 40(7): 891–902.                     32.  Darling EM, Topel M, Zauscher S, et al., 2008, Viscoelastic
            15.  Felipe-Mendes C, Ruiz-Rubio L, Vilas-Vilela JL, 2020,   properties of human mesenchymally-derived stem cells
               Biomaterials obtained by photopolymerization: From UV to   and primary osteoblasts, chondrocytes, and adipocytes.  J
               two photon. Emerg Mater, 3(4): 453–468.            Biomech, 41(2): 454–464.
            Volume 9 Issue 1 (2023)                        156                     https://doi.org/10.18063/ijb.v9i1.632





