Page 21 - IJB-9-1
P. 21

International Journal of Bioprinting                             Biocompatible materials and Multi Jet Fusion



            54.   Liu Q, Hu X, Zhang X, et al., 2016, Effects of mechanical   63.   Mackie EJ, Ahmed YA, Tatarczuch L, et al., 2008, Endochondral
               stress on chondrocyte phenotype and chondrocyte    ossification: how cartilage is converted into bone in the
               extracellular matrix expression. Sci Rep, 6:1–8.   developing skeleton. Int J Biochem Cell Biol, 40:46–62.
               https://doi.org/10.1038/srep37268                  https://doi.org/10.1016/j.biocel.2007.06.009
            55.   He H, Li D, Lin Z, et al., 2020, Temperature-programmable   64.   Folkesson E, Turkiewicz A, Rydén M, et al., 2020, Proteomic
               and enzymatically solidifiable gelatin-based bioinks enable   characterization of the normal human medial meniscus body
               facile extrusion bioprinting. Biofabrication, 12.  using data-independent acquisition mass spectrometry.  J
                                                                  Orthop Res, 38:1735–1745.
               https://doi.org/10.1088/1758-5090/ab9906
                                                                  https://doi.org/10.1002/jor.24602
            56.   Erkoc P, Uvak I, Nazeer MA,  et al., 2020, 3D printing of
               cytocompatible gelatin-cellulose-alginate blend hydrogels.   65.   Francis SL, di Bella C, Wallace GG, et al., 2018, Cartilage tissue
               Macromol Biosci, 20:1–15.                          engineering using stem cells and bioprinting technology—
                                                                  barriers to clinical translation. Front Surg, 5:1–12.
               https://doi.org/10.1002/mabi.202000106
                                                                  https://doi.org/10.3389/fsurg.2018.00070
            57.   Place ES, Rojo L, Gentleman E, et al., 2011, Strontium-and
               zinc-alginate hydrogels for bone tissue engineering. Tissue   66.   Sharma P, Kumar  P, Sharma  R,  et al., 2019,  Tissue
               Eng Part A, 17:2713–2722.                          engineering; current status & futuristic scope. J Med Life,
                                                                  12:225–229.
               https://doi.org/10.1089/ten.tea.2011.0059
                                                                  https://doi.org/10.25122/jml-2019-0032
            58.   Teti G, Focaroli S, Salvatore V,  et al., 2018, The hypoxia-
               mimetic agent cobalt chloride differently affects human   67.   Sathish PB, Gayathri S, Priyanka J, et al., 2022, Tricomposite
               mesenchymal stem cells in their chondrogenic potential.   gelatin-carboxymethylcellulose-alginate bioink for direct
               Stem Cells Int, 2018: 3237253.                     and indirect 3D printing of human knee meniscal scaffold.
                                                                  Int J Biol Macromol, 195:179–189.
               https://doi.org/10.1155/2018/3237253
                                                                  https://doi.org/10.1016/j.ijbiomac.2021.11.184
            59.   Focaroli S, Teti G, Salvatore V, et al., 2016, Calcium/cobalt
               alginate beads as functional scaffolds for cartilage tissue   68.   Dutta SD, Hexiu J, Patel DK,  et al., 2021, 3D-printed
               engineering. Stem Cells Int, 2016:20–22.           bioactive and biodegradable hydrogel scaffolds of alginate/
               https://doi.org/10.1155/2016/2030478               gelatin/cellulose nanocrystals for tissue engineering.  Int J
                                                                  Biol Macromol, 167:644–658.
            60.   Nguyen D, Hgg DA, Forsman A,  et al., 2017, Cartilage
               tissue engineering by the 3D bioprinting of iPS cells in a   https://doi.org/10.1016/j.ijbiomac.2020.12.011
               nanocellulose/alginate bioink. Sci Rep, 7:658.  69.   Ramakrishnan R, Kasoju N, Raju R, et al., 2022, Exploring
                                                                  the  potential  of  alginate-gelatin-diethylaminoethyl
               https://doi.org/10.1038/s41598-017-00690-y
                                                                  cellulose-fibrinogen based bioink for 3d bioprinting of skin
            61.   Apelgren P, Amoroso M, Lindahl A,  et al., (2017)   tissue constructs. Carbohydr Polym Technol Appl, 3:100184.
               Chondrocytes and stem cells in 3D-bioprinted structures
               create human cartilage in vivo. PLoS ONE, 12:e0189428.  https://doi.org/10.1016/j.carpta.2022.100184
                                                               70.   Somasekharan LT, Raju R, Kumar S,  et al., 2021,
               https://doi.org/10.1371/journal.pone.0189428
                                                                  Biofabrication  of skin tissue  constructs  using  alginate,
            62.   Grogan SP, Duffy SF, Pauli C, et al., 2018, Gene expression   gelatin and diethylaminoethyl cellulose bioink.  Int J Biol
               profiles of the meniscus avascular phenotype: A guide for   Macromol, 189:398–409.
               meniscus tissue engineering. J Orthop Res, 36:1947–1958.
                                                                  https://doi.org/10.1016/j.ijbiomac.2021.08.114
               https://doi.org/10.1002/jor.23864



















            Volume 9 Issue 1 (2023)                         13                      https://doi.org/10.18063/ijb.v9i1.621
   16   17   18   19   20   21   22   23   24   25   26