Page 21 - IJB-9-1
P. 21
International Journal of Bioprinting Biocompatible materials and Multi Jet Fusion
54. Liu Q, Hu X, Zhang X, et al., 2016, Effects of mechanical 63. Mackie EJ, Ahmed YA, Tatarczuch L, et al., 2008, Endochondral
stress on chondrocyte phenotype and chondrocyte ossification: how cartilage is converted into bone in the
extracellular matrix expression. Sci Rep, 6:1–8. developing skeleton. Int J Biochem Cell Biol, 40:46–62.
https://doi.org/10.1038/srep37268 https://doi.org/10.1016/j.biocel.2007.06.009
55. He H, Li D, Lin Z, et al., 2020, Temperature-programmable 64. Folkesson E, Turkiewicz A, Rydén M, et al., 2020, Proteomic
and enzymatically solidifiable gelatin-based bioinks enable characterization of the normal human medial meniscus body
facile extrusion bioprinting. Biofabrication, 12. using data-independent acquisition mass spectrometry. J
Orthop Res, 38:1735–1745.
https://doi.org/10.1088/1758-5090/ab9906
https://doi.org/10.1002/jor.24602
56. Erkoc P, Uvak I, Nazeer MA, et al., 2020, 3D printing of
cytocompatible gelatin-cellulose-alginate blend hydrogels. 65. Francis SL, di Bella C, Wallace GG, et al., 2018, Cartilage tissue
Macromol Biosci, 20:1–15. engineering using stem cells and bioprinting technology—
barriers to clinical translation. Front Surg, 5:1–12.
https://doi.org/10.1002/mabi.202000106
https://doi.org/10.3389/fsurg.2018.00070
57. Place ES, Rojo L, Gentleman E, et al., 2011, Strontium-and
zinc-alginate hydrogels for bone tissue engineering. Tissue 66. Sharma P, Kumar P, Sharma R, et al., 2019, Tissue
Eng Part A, 17:2713–2722. engineering; current status & futuristic scope. J Med Life,
12:225–229.
https://doi.org/10.1089/ten.tea.2011.0059
https://doi.org/10.25122/jml-2019-0032
58. Teti G, Focaroli S, Salvatore V, et al., 2018, The hypoxia-
mimetic agent cobalt chloride differently affects human 67. Sathish PB, Gayathri S, Priyanka J, et al., 2022, Tricomposite
mesenchymal stem cells in their chondrogenic potential. gelatin-carboxymethylcellulose-alginate bioink for direct
Stem Cells Int, 2018: 3237253. and indirect 3D printing of human knee meniscal scaffold.
Int J Biol Macromol, 195:179–189.
https://doi.org/10.1155/2018/3237253
https://doi.org/10.1016/j.ijbiomac.2021.11.184
59. Focaroli S, Teti G, Salvatore V, et al., 2016, Calcium/cobalt
alginate beads as functional scaffolds for cartilage tissue 68. Dutta SD, Hexiu J, Patel DK, et al., 2021, 3D-printed
engineering. Stem Cells Int, 2016:20–22. bioactive and biodegradable hydrogel scaffolds of alginate/
https://doi.org/10.1155/2016/2030478 gelatin/cellulose nanocrystals for tissue engineering. Int J
Biol Macromol, 167:644–658.
60. Nguyen D, Hgg DA, Forsman A, et al., 2017, Cartilage
tissue engineering by the 3D bioprinting of iPS cells in a https://doi.org/10.1016/j.ijbiomac.2020.12.011
nanocellulose/alginate bioink. Sci Rep, 7:658. 69. Ramakrishnan R, Kasoju N, Raju R, et al., 2022, Exploring
the potential of alginate-gelatin-diethylaminoethyl
https://doi.org/10.1038/s41598-017-00690-y
cellulose-fibrinogen based bioink for 3d bioprinting of skin
61. Apelgren P, Amoroso M, Lindahl A, et al., (2017) tissue constructs. Carbohydr Polym Technol Appl, 3:100184.
Chondrocytes and stem cells in 3D-bioprinted structures
create human cartilage in vivo. PLoS ONE, 12:e0189428. https://doi.org/10.1016/j.carpta.2022.100184
70. Somasekharan LT, Raju R, Kumar S, et al., 2021,
https://doi.org/10.1371/journal.pone.0189428
Biofabrication of skin tissue constructs using alginate,
62. Grogan SP, Duffy SF, Pauli C, et al., 2018, Gene expression gelatin and diethylaminoethyl cellulose bioink. Int J Biol
profiles of the meniscus avascular phenotype: A guide for Macromol, 189:398–409.
meniscus tissue engineering. J Orthop Res, 36:1947–1958.
https://doi.org/10.1016/j.ijbiomac.2021.08.114
https://doi.org/10.1002/jor.23864
Volume 9 Issue 1 (2023) 13 https://doi.org/10.18063/ijb.v9i1.621

