Page 19 - IJB-9-1
P. 19
International Journal of Bioprinting Biocompatible materials and Multi Jet Fusion
10. Chae S, Lee SS, Choi YJ, et al., 2021, 3D cell-printing of alginate bioink for cartilage tissue engineering applications.
biocompatible and functional meniscus constructs using Biomacromolecules, 16:1489–1496.
meniscus‐derived bioink. Biomaterials, 267:120466.
https://doi.org/10.1021/acs.biomac.5b00188
https://doi.org/10.1016/j.biomaterials.2020.120466
22. Ojansivu M, Rashad A, Ahlinder A, et al., 2019, Wood-
11. Jian Z, Zhuang T, Qinyu T, et al., 2021, 3D bioprinting of based nanocellulose and bioactive glass modified
a biomimetic meniscal scaffold for application in tissue gelatin-alginate bioinks for 3D bioprinting of bone cells.
engineering. Bioact Mater, 6:1711–1726. Biofabrication, 11:035010.
https://doi.org/10.1016/j.bioactmat.2020.11.027 https://doi.org/10.1088/1758-5090/ab0692
12. Mieloch AA, Semba JA, Rybka JD, 2022, CNT-type 23. Zaeri A, Cao K, Zhang F, et al., 2022, A review of the structural
dependent cellular adhesion on 3D-printed nanocomposite and physical properties that govern cell interactions with
for tissue engineering. Int J Bioprint, 8(2):548. structured biomaterials enabled by additive manufacturing.
https://doi.org/10.18063/ijb.v8i2.548 Bioprinting, 26:e00201.
13. Vahedi P, Jarolmasjed S, Shafaei H, et al., 2019, In vivo https://doi.org/10.1016/j.bprint.2022.e00201
articular cartilage regeneration through infrapatellar adipose 24. Zhao Z, Li Y, Wang M, et al., 2020, Mechanotransduction
tissue derived stem cell in nanofiber polycaprolactone pathways in the regulation of cartilage chondrocyte
scaffold. Tissue and Cell 57:49–56. homoeostasis. Journal of Cellular and Molecular Medicine,
https://doi.org/10.1016/j.tice.2019.02.002 24:5408–5419.
14. Romanazzo S, Vedicherla S, Moran C, et al., 2018, Meniscus https://doi.org/10.1111/jcmm.15204
ECM-functionalised hydrogels containing infrapatellar fat 25. Möller T, Amoroso M, Hägg D, et al., 2017, In vivo
pad-derived stem cells for bioprinting of regionally defined chondrogenesis in 3D bioprinted human cell-laden hydrogel
meniscal tissue. J Tissue Eng Regen Med, 12:e1826–e1835. constructs. Plast Reconstr Surg—Glob Open, 5:e1227.
https://doi.org/10.1002/term.2602 https://doi.org/10.1097/GOX.0000000000001227
15. Saldin LT, Cramer MC, Velankar SS, et al., 2017, Extracellular 26. Jiang T, Munguia-Lopez JG, Flores-Torres S, et al., 2019,
matrix hydrogels from decellularized tissues: Structure and Extrusion bioprinting of soft materials: An emerging technique
function. Acta Biomaterialia 49:1–15 for biological model fabrication. Appl Phys Rev, 6:011310.
16. Ng WL, Chua CK, Shen YF, 2019, Print me an organ! Why https://doi.org/10.1063/1.5059393
we are not there yet. Prog Polym Sci, 97:101145.
27. Dravid A, McCaughey-Chapman A, Raos B, et al., 2022,
https://doi.org/10.1016/j.progpolymsci.2019.101145 Development of agarose-gelatin bioinks for extrusion-
17. Liu D, Nikoo M, Boran G, et al., 2015, Collagen and gelatin. based bioprinting and cell encapsulation. Biomed Mater
Annu Rev Food Sci Technol, 6:527–557. (Bristol), 17:055001.
https://doi.org/10.1146/annurev-food-031414-111800 https://doi.org/10.1088/1748-605X/ac759f
18. Ojansivu M, Rashad A, Ahlinder A, et al., 2019, Wood-based 28. Li Z, Huang S, Liu Y, et al., 2018, Tuning alginate-gelatin
nanocellulose and bioactive glass modified gelatin-alginate bioink properties by varying solvent and their impact on
bioinks for 3D bioprinting of bone cells. Biofabrication, stem cell behavior. Sci Rep, 8:8020.
11:35010. https://doi.org/10.1038/s41598-018-26407-3
https://doi.org/10.1088/1758-5090/ab0692 29. Zhuang P, Ng WL, An J, et al., 2019, Layer-by-layer
19. Leite ÁJ, Sarker B, Zehnder T, et al., 2016, Bioplotting of a ultraviolet assisted extrusion-based (UAE) bioprinting of
bioactive alginate dialdehyde-gelatin composite hydrogel hydrogel constructs with high aspect ratio for soft tissue
containing bioactive glass nanoparticles. Biofabrication, engineering applications. PLoS ONE, 14:1–21.
8:035005. https://doi.org/10.1371/journal.pone.0216776
https://doi.org/10.1088/1758-5090/8/3/035005 30. Zaeri A, Zgeib R, Cao K, et al., 2022, Numerical analysis on
20. Costantini M, Idaszek J, Szöke K, et al., 2016, 3D bioprinting the effects of microfluidic-based bioprinting parameters on
of BM-MSCs-loaded ECM biomimetic hydrogels for in vitro the microfiber geometrical outcomes. Sci Rep, 12:1–16.
neocartilage formation. Biofabrication, 8:035002. https://doi.org/10.1038/s41598-022-07392-0
https://doi.org/10.1088/1758-5090/8/3/035002 31. Li X, Liu B, Pei B, et al., 2020, Inkjet bioprinting of
21. Markstedt K, Mantas A, Tournier I, et al., 2015, 3D biomaterials. Chem Rev, 120:10793–10833.
bioprinting human chondrocytes with nanocellulose- https://doi.org/10.1021/acs.chemrev.0c00008
Volume 9 Issue 1 (2023) 11 https://doi.org/10.18063/ijb.v9i1.621

