Page 19 - IJB-9-1
P. 19

International Journal of Bioprinting                             Biocompatible materials and Multi Jet Fusion



            10.   Chae S, Lee SS, Choi YJ,  et  al., 2021, 3D cell-printing of   alginate bioink for cartilage tissue engineering applications.
               biocompatible and functional meniscus constructs using   Biomacromolecules, 16:1489–1496.
               meniscus‐derived bioink. Biomaterials, 267:120466.
                                                                  https://doi.org/10.1021/acs.biomac.5b00188
               https://doi.org/10.1016/j.biomaterials.2020.120466
                                                               22.   Ojansivu M, Rashad A, Ahlinder A,  et al., 2019, Wood-
            11.   Jian Z, Zhuang T, Qinyu T, et al., 2021, 3D bioprinting of   based nanocellulose and bioactive glass modified
               a biomimetic meniscal scaffold for application in tissue   gelatin-alginate bioinks for 3D bioprinting of bone cells.
               engineering. Bioact Mater, 6:1711–1726.            Biofabrication, 11:035010.
               https://doi.org/10.1016/j.bioactmat.2020.11.027    https://doi.org/10.1088/1758-5090/ab0692
            12.   Mieloch  AA,  Semba  JA,  Rybka  JD,  2022,  CNT-type   23.   Zaeri A, Cao K, Zhang F, et al., 2022, A review of the structural
               dependent cellular adhesion on 3D-printed nanocomposite   and physical properties that govern cell interactions with
               for tissue engineering. Int J Bioprint, 8(2):548.  structured biomaterials enabled by additive manufacturing.
               https://doi.org/10.18063/ijb.v8i2.548              Bioprinting, 26:e00201.
            13.   Vahedi P, Jarolmasjed S, Shafaei H,  et al., 2019, In vivo   https://doi.org/10.1016/j.bprint.2022.e00201
               articular cartilage regeneration through infrapatellar adipose   24.   Zhao Z, Li Y, Wang M, et al., 2020, Mechanotransduction
               tissue derived stem cell in nanofiber polycaprolactone   pathways in the regulation of cartilage chondrocyte
               scaffold. Tissue and Cell 57:49–56.                homoeostasis. Journal of Cellular and Molecular Medicine,
               https://doi.org/10.1016/j.tice.2019.02.002         24:5408–5419.
            14.   Romanazzo S, Vedicherla S, Moran C, et al., 2018, Meniscus   https://doi.org/10.1111/jcmm.15204
               ECM-functionalised hydrogels containing infrapatellar fat   25.   Möller T, Amoroso M, Hägg D,  et  al., 2017, In vivo
               pad-derived stem cells for bioprinting of regionally defined   chondrogenesis in 3D bioprinted human cell-laden hydrogel
               meniscal tissue. J Tissue Eng Regen Med, 12:e1826–e1835.   constructs. Plast Reconstr Surg—Glob Open, 5:e1227.
               https://doi.org/10.1002/term.2602                  https://doi.org/10.1097/GOX.0000000000001227
            15.   Saldin LT, Cramer MC, Velankar SS, et al., 2017, Extracellular   26.   Jiang  T, Munguia-Lopez  JG, Flores-Torres S,  et al.,  2019,
               matrix hydrogels from decellularized tissues: Structure and   Extrusion bioprinting of soft materials: An emerging technique
               function. Acta Biomaterialia 49:1–15               for biological model fabrication. Appl Phys Rev, 6:011310.
            16.   Ng WL, Chua CK, Shen YF, 2019, Print me an organ! Why   https://doi.org/10.1063/1.5059393
               we are not there yet. Prog Polym Sci, 97:101145.
                                                               27.   Dravid  A, McCaughey-Chapman A,  Raos  B,  et al., 2022,
               https://doi.org/10.1016/j.progpolymsci.2019.101145  Development  of  agarose-gelatin  bioinks  for  extrusion-
            17.   Liu D, Nikoo M, Boran G, et al., 2015, Collagen and gelatin.   based  bioprinting  and  cell  encapsulation.  Biomed Mater
               Annu Rev Food Sci Technol, 6:527–557.              (Bristol), 17:055001.
               https://doi.org/10.1146/annurev-food-031414-111800  https://doi.org/10.1088/1748-605X/ac759f
            18.   Ojansivu M, Rashad A, Ahlinder A, et al., 2019, Wood-based   28.   Li Z, Huang S, Liu Y, et al., 2018, Tuning alginate-gelatin
               nanocellulose and bioactive glass modified gelatin-alginate   bioink properties by varying solvent and their impact on
               bioinks for 3D bioprinting of bone cells.  Biofabrication,   stem cell behavior. Sci Rep, 8:8020.
               11:35010.                                          https://doi.org/10.1038/s41598-018-26407-3
               https://doi.org/10.1088/1758-5090/ab0692        29.   Zhuang P, Ng WL, An J,  et al., 2019, Layer-by-layer
            19.   Leite ÁJ, Sarker B, Zehnder T, et al., 2016, Bioplotting of a   ultraviolet assisted extrusion-based (UAE) bioprinting of
               bioactive alginate dialdehyde-gelatin composite hydrogel   hydrogel constructs with high aspect ratio for soft tissue
               containing bioactive glass nanoparticles.  Biofabrication,   engineering applications. PLoS ONE, 14:1–21.
               8:035005.                                          https://doi.org/10.1371/journal.pone.0216776
               https://doi.org/10.1088/1758-5090/8/3/035005    30.   Zaeri A, Zgeib R, Cao K, et al., 2022, Numerical analysis on
            20.   Costantini M, Idaszek J, Szöke K, et al., 2016, 3D bioprinting   the effects of microfluidic-based bioprinting parameters on
               of BM-MSCs-loaded ECM biomimetic hydrogels for in vitro   the microfiber geometrical outcomes. Sci Rep, 12:1–16.
               neocartilage formation. Biofabrication, 8:035002.   https://doi.org/10.1038/s41598-022-07392-0
               https://doi.org/10.1088/1758-5090/8/3/035002    31.   Li X, Liu B, Pei B,  et al., 2020, Inkjet bioprinting of
            21.   Markstedt K, Mantas A, Tournier I,  et al., 2015, 3D   biomaterials. Chem Rev, 120:10793–10833.
               bioprinting human chondrocytes with nanocellulose-  https://doi.org/10.1021/acs.chemrev.0c00008



            Volume 9 Issue 1 (2023)                         11                      https://doi.org/10.18063/ijb.v9i1.621
   14   15   16   17   18   19   20   21   22   23   24