Page 315 - IJB-9-1
P. 315

International Journal of Bioprinting                                      Error assessment and correction



            12.  Peng W, Datta P, Ayan B, et al., 2017, 3D bioprinting for   23.  Lee A, Hudson AR, Shiwarski DJ, et al., 2019, 3D bioprinting
               drug discovery and development in pharmaceutics.  Acta   of collagen to rebuild components of the human heart.
               Biomater, 57: 26–46.                               Science (80-. ), 365(6452): 482–487.
               https://doi.org/10.1016/j.actbio.2017.05.025       https://doi.org/10.1126/science.aav9051
            13.  Daly AC, Prendergast ME, Hughes AJ,  et al., 2021,   24.  Bertassoni LE,  Cardoso  JC,  Manoharan  V,  et al., 2014,
               Bioprinting for the biologist. Cell, 184(1): 18–32.  Direct-write bioprinting of cell-laden methacrylated gelatin
                                                                  hydrogels. Biofabrication, 6(2): 024105.
               https://doi.org/10.1016/j.cell.2020.12.002
                                                                  https://doi.org/10.1088/1758-5082/6/2/024105
            14.  Rastogi P, Kandasubramanian B, 2019, Review of alginate-
               based hydrogel bioprinting for application in tissue   25.  Armstrong AA, Alleyne AG, Wagoner Johnson AJ, 2020, 1D
               engineering. Biofabrication, 11(4): 042001.        and 2D error assessment and correction for extrusion-based
                                                                  bioprinting using process sensing and control strategies.
               https://doi.org/10.1088/1758-5090/ab331e
                                                                  Biofabrication, 12(4): 045023.
            15.  Jose RR, Rodriguez MJ, Dixon TA, et al., 2016, Evolution   https://doi.org/10.1088/1758-5090/aba8ee
               of bioinks and additive manufacturing technologies for 3D
               bioprinting. ACS Biomater Sci Eng, 2(10): 1662–1678.  26.  Armstrong AA, Pfeil A, Alleyne AG, et al., 2021, Process
                                                                  monitoring and control strategies in extrusion-based
               https://doi.org/10.1021/acsbiomaterials.6b00088    bioprinting to fabricate spatially graded structures.
            16.  Ozbolat IT, Hospodiuk M, 2016, Current advances and   Bioprinting, 21(September 2020): e00126.
               future  perspectives  in extrusion-based bioprinting.   https://doi.org/10.1016/j.bprint.2020.e00126
               Biomaterials, 76: 321–343.
                                                               27.  Liu C, Liu J, Yang C,  et  al., 2022, Computer vision-aided
               https://doi.org/10.1016/j.biomaterials.2015.10.076  2D error assessment and correction for helix bioprinting.
            17.  Paxton N, Smolan W, Böck T, et al., 2017, Proposal to assess   Int J Bioprinting, 8(2): 174–186.
               printability of bioinks for extrusion-based bioprinting   https://doi.org/10.18063/ijb.v8i2.547
               and evaluation of rheological properties governing
               bioprintability. Biofabrication, 9(4): 044107.  28.  Axpe E, Oyen ML, 2016, Applications of alginate-based
                                                                  bioinks in 3D bioprinting. Int J Mol Sci, 17(12): 1976.
               https://doi.org/10.1088/1758-5090/aa8dd8
                                                                  https://doi.org/10.3390/ijms17121976
            18.  Chung JHY, Naficy S, Yue Z, et al., 2013, Bio-ink properties
               and printability for extrusion printing living cells. Biomater   29.  Wang B, Wan Y, Zheng Y,  et al., 2019, Alginate-based
               Sci, 1(7): 763–773.                                composites for environmental applications: A critical review.
                                                                  Crit Rev Environ Sci Technol, 49(4): 318–356.
               https://doi.org/10.1039/c3bm00012e
                                                                  https://doi.org/10.1080/10643389.2018.1547621
            19.  Blaeser A, Duarte Campos DF, Puster U, et al., Controlling
               shear stress in 3D bioprinting is a key factor to balance   30.  Rastogi P, Kandasubramanian B, 2019, Review of alginate-
               printing resolution and stem cell integrity.  Adv  Healthc   based hydrogel bioprinting for application in tissue
               Mater, 5(3): 326–333.                              engineering. Biofabrication, 11(4): 042001.
               https://doi.org/10.1002/adhm.201500677             https://doi.org/10.1088/1758-5090/ab331e
            20.  Lee JM, Ng WL, Yeong WY, 2019, Resolution and shape in   31.  Jain D, Bar-Shalom D, 2014, Alginate drug delivery systems:
               bioprinting: Strategizing towards complex tissue and organ   Application in  context  of pharmaceutical  and  biomedical
               printing. Appl Phys Rev, 6(1): 011307.             research. Drug Dev Ind Pharm, 40(12): 1576–1584.
               https://doi.org/10.1063/1.5053909                  https://doi.org/10.3109/03639045.2014.917657
                                                               32.  AbdelAllah NH, Gaber Y, Rashed ME,  et al., 2020,
            21.  Suntornnond R, Tan EYS, An J, et al., 2016, A mathematical
               model on the resolution of extrusion bioprinting for the   Alginate-coated chitosan nanoparticles act as effective
               development of new bioinks. Materials (Basel), 9(9): 756.  adjuvant for hepatitis A vaccine in mice.  Int J Biol
                                                                  Macromol, 152: 904–912.
               https://doi.org/10.3390/ma9090756
                                                                  https://doi.org/10.1016/j.ijbiomac.2020.02.287
            22.  Wang Z, Abdulla R, Parker B, et al., 2015, A simple and high-
               resolution stereolithography-based 3D bioprinting system using   33.  Ghosh M, Halperin-Sternfeld M, Grinberg I,  et al., 2019,
               visible light crosslinkable bioinks. Biofabrication, 7(4): 45009.  Injectable alginate-peptide composite hydrogel as a scaffold
                                                                  for bone tissue regeneration. Nanomaterials, 9(4): 497.
               https://doi.org/10.1088/1758-5090/7/4/045009
                                                                  https://doi.org/10.3390/nano9040497




            Volume 9 Issue 1 (2023)olume 9 Issue 1 (2023)  307                     https://doi.org/10.18063/ijb.v9i1.644
            V
   310   311   312   313   314   315   316   317   318   319   320