Page 341 - IJB-9-1
P. 341

International Journal of Bioprinting                             Review on Hybrid Biomanufacturing Systems


               complex, cell-laden hydrogel structures. Sci Rep, 8: 17099.   Biomater, 51: 1–20.
               https://doi.org/10.1038/s41598-018-35504-2         https://doi.org/10.1016/j.actbio.2017.01.035

            28.  Odde DJ, Renn MJ, 1999, Laser-guided direct writing   40.  Mobaraki M, Ghaffari M, Yazdanpanah A,  et al., 2020,
               for applications in biotechnology.  Trends Biotechnol,   Bioinks and bioprinting: A focused review. Bioprinting, 18:
               17: 385–389.                                       e00080.
               https://doi.org/10.1016/s0167-7799(99)01355-4   41.  Qi X, Pei P, Zhu M, et al., 2017, Three-dimensional printing
                                                                  of calcium sulfate and mesoporous bioactive glass scaffolds
            29.  Sears NA, Seshadri DR, Dhavalikar PS, et al., 2016, A review
               of three-dimensional printing in tissue engineering. Tissue   for improving bone regeneration in vitro and in vivo. Sci Rep,
               Eng Part B: Rev, 22: 298–310.                      7: 42556.
            30.  Kérourédan O, Rémy M, Oliveira H,  et al., 2018, Laser‐  42.  Jakus  AE,  Shah  RN,  2017,  Multi  and  mixed  3D‐printing
               assisted biomanufacturing of cells for tissue engineering. In:   of  graphene‐hydroxyapatite hybrid materials for complex
               Laser Printing of Functional Materials: 3D Microfabrication,   tissue engineering. J Biomed Mater Res A, 105: 274–283.
               Electronics and Biomedicine. United States: Wiley. p349–     https://doi.org/10.1002/jbm.a.35684
               373.
                                                               43.  Kim MH, Lee YW, Jung WK,  et al., 2019, Enhanced
            31.  Martinez-Rivas A, González-Quijano GK, Proa-Coronado S,   rheological behaviors of alginate hydrogels with carrageenan
               et al., 2017, Methods of micropatterning and manipulation   for extrusion-based biomanufacturing. J Mech Behav Biomed
               of cells for biomedical applications. Micromachines (Basel),   Mater, 98: 187–194.
               8: 347.
                                                                  https://doi.org/10.1016/j.jmbbm.2019.06.014
               https://doi.org/10.3390/mi8120347
                                                               44.  Blaeser A, Million N, Campos DF, et al., 2016, Laser-based
            32.  Guillemot F, Souquet A,  Catros S,  et al., 2010, High-  in situ embedding of metal nanoparticles into bioextruded
               throughput laser printing of cells and biomaterials for tissue   alginate hydrogel tubes enhances human endothelial cell
               engineering. Acta biomater, 6: 2494–500.           adhesion. Nano Res, 9: 3407–3427.
               https://doi.org/10.1016/j.actbio.2009.09.029    45.  Bellini A, 2002, Fused Deposition of Ceramics:
            33.  Koch L, Deiwick A, Chichkov B, 2018, Laser-based cell printing.   A   Comprehensive  Experimental,  Analytical  and
               In: Ovsianikov, A., Yoo, J., Mironov, V. (eds) 3D Printing and   Computational Study of Material Behavior, Fabrication
               Biofabrication. Springer, Champaign. p. 303-329.   Process and Equipment Design. Drexel University, United
                                                                  States.
               https://doi.org/10.1007/978-3-319-45444-3_11
                                                               46.  Almeida H, Bartolo P, Mota C,  et al., 2010, Processo
            34.  Vinson BT, Sklare SC, Chrisey DB, 2017, Laser-based cell   e Equipamento de Fabrico Rápido por Bioextrusao.
               printing techniques for additive biomanufacturing.  Curr   Portuguese Patent Application. p104247.
               Opin Biomed Eng, 2: 14–21.
                                                               47.  Liu, F, Wang, W, Mirihanage, W,  et  al., 2018, A plasma-
            35.  Pereira RF, Bártolo PJ, 2015, 3D biomanufacturing of   assisted  bioextrusion system  for tissue engineering.  CIRP
               photocrosslinkable hydrogel constructs.  J  Appl Polym Sci,   Ann, 67: 229–232.
               132: 42458.
                                                               48.  Wang W, Caetano G, Ambler WS, et al., 2016, Enhancing
            36.  Bourget JM, Kérourédan O, Medina M,  et  al., 2016,   the hydrophilicity and cell attachment of 3D printed pcl/
               Patterning of endothelial cells and mesenchymal stem cells   graphene scaffolds for bone tissue engineering.  Materials,
               by laser-assisted biomanufacturing to study cell migration.   9: 992.
               Biomed Res Int, 2016: 3569843.
                                                               49.  Boularaoui S, Al Hussein G, Khan KA, et al., An overview of
               https://doi.org/10.1155/2016/3569843               extrusion-based bioprinting with a focus on induced shear
            37.  Keriquel V, Oliveira H, Rémy M,  et al., 2017,  In situ   stress and its effect on cell viability. Bioprinting, 20: e00093.
               printing of mesenchymal stromal cells, by laser-assisted   50.  Zhang T, Zhao W, Xiahou Z,  et al., Bioink design for
               biomanufacturing, for  in  vivo bone regeneration   extrusion-based bioprinting. Appl Mater Today, 25: 101227.
               applications. Sci Rep, 7: 1778.
                                                               51.  Chen DX, 2019, Extrusion biomanufacturing of scaffolds.
               https://doi.org/10.1038/s41598-017-01914-x         In: Extrusion Biomanufacturing of Scaffolds for Tissue
            38.  Zhang B, Luo Y, Ma L, et al., 2018, 3D biomanufacturing: An   Engineering Applications. Springer, Berlin. p117–145.
               emerging technology full of opportunities and challenges.   52.  Zhang AP, Qu X, Soman P, et al., 2012, Rapid fabrication
               Bio Des Manuf, 1: 2–13.
                                                                  of complex 3D extracellular microenvironments by
            39.  Datta P, Ayan B, Ozbolat IT, 2017, Biomanufacturing   dynamic optical projection stereolithography.  Adv Mater,
               for vascular and vascularized tissue biofabrication.  Acta   24: 4266–4270.


            Volume 9 Issue 1 (2023)                        333                      https://doi.org/10.18063/ijb.v9i1.646
   336   337   338   339   340   341   342   343   344   345   346