Page 42 - IJB-9-1
P. 42

Biocompatible materials and Multi Jet Fusion


               https://doi.org/10.1016/j.progpolymsci.2018.11.001  59.  Lin SD, Lamvik M, 1975, High resolution scanning electron
            47.  Wu H, Fahy W, Kim S, et al., 2020, Recent developments   microscopy at the subcellular level. J Microsc, 103: 249–257.
               in polymers/polymer nanocomposites for additive      https://doi.org/10.1111/j.1365-2818.1975.tb03900.x
               manufacturing. Prog Mater Sci, 111: 100638.
                                                               60.  O’Connor HJ, Dickson AN, Dowling DP, 2018, Evaluation
               https://doi.org/10.1016/j.pmatsci.2020.100638      of the mechanical performance of polymer parts fabricated
            48.  Wang H, Li Y, Zuo Y,  et al., 2007, Biocompatibility   using a production scale multi jet fusion printing process.
               and osteogenesis of biomimetic Nano-hydroxyapatite/  Addit Manuf, 22: 381–387.
               polyamide composite scaffolds for bone tissue engineering.      https://doi.org/10.1016/j.addma.2018.05.035
               Biomaterials, 28: 3338–3348.
                                                               61.  Palma T, Munther M, Damasus P,  et al., 2019, Multiscale
               https://doi.org/10.1016/j.biomaterials.2007.04.014  mechanical and tribological characterizations of additively
            49.  Upadhyay DJ, Cui NY, Anderson CA,  et al., 2004, A   manufactured polyamide  12  parts  with different print
               comparative study of the surface activation of polyamides   orientations. J Manuf Processes, 40: 76–83.
               using an air dielectric barrier discharge.  Colloids Surf      https://doi.org/10.1016/j.jmapro.2019.03.004
               Physicochem Eng Aspects, 248: 47–56.
                                                               62.  Dadbakhsh S, Verbelen L, Verkinderen O,  et  al., 2017,
               https://doi.org/10.1016/j.colsurfa.2004.08.016     Effect of PA12 powder reuse on coalescence behaviour and
            50.  Goodridge RD, Tuck CJ, Hague RJ, 2012, Laser sintering of   microstructure of SLS parts. Eur Polym J, 92: 250–262.
               polyamides and other polymers. Prog Mater Sci, 57: 229–267.     https://doi.org/10.1016/j.eurpolymj.2017.05.014
               https://doi.org/10.1016/j.pmatsci.2011.04.001   63.  Yusoff W, Thomas A, 2008, The effect of employing an
            51.  Liu G, Li Y, Yang L,  et al., 2017, Cytotoxicity study of   effective laser sintering scanning strategy and energy density
               polyethylene glycol derivatives. RSC Adv, 7: 18252–18259.  value  on eliminating  “Orange  peel”  on  a selective  laser
                                                                  sintered part. International association for management of
            52.  Yuan X, Zhang X, Sun L, et al., 2019, Cellular toxicity and   technology, proceedings.
               immunological effects of Carbon-based nanomaterials.
               Part Fibre Toxicol, 16: 18.                     64.  Holländer A, Cosemans P, 2020, Surface technology for
                                                                  additive manufacturing.  Plasma Processes Polym, 17:
            53.  Rosso S, Meneghello R, Biasetto L,  et  al., 2020, In-depth   1900155.
               comparison of polyamide 12 parts manufactured by multi
               jet fusion and selective laser sintering.  Addit Manuf, 36:      https://doi.org/10.1002/ppap.201900155
               101713.                                         65.  Cai S, Wu C, Yang W, et al., 2020, Recent advance in surface
               https://doi.org/10.1016/j.addma.2020.101713        modification for regulating cell adhesion and behaviors.
                                                                  Nanotechnol Rev, 9: 971–989.
            54.  Scherer B, Kottenstedde IL, Matysik FM, 2020, Material
               characterization of polyamide 12 and related agents used      https://doi.org/10.1515/ntrev-2020-0076
               in the multi-jet fusion process: Complementary application   66.  Wieslander AP, Nordin MK, Hansson B, et al., 1993, In vitro
               of high-resolution mass spectrometry and other advanced   toxicity of biomaterials determined with cell density, total
               instrumental techniques. Monatsh Chem Chem Mon, 151:   protein, cell cycle distribution and adenine nucleotides.
               1203–1215.                                         Biomater Artif Cells Immobilization Biotechnol, 21: 63–70.
            55.  Boyde A, Wood C, 1969, Preparation of animal tissues for      https://doi.org/10.3109/10731199309118297
               Surface-scanning electron microscopy. J Microsc, 90: 221–249.
                                                               67.  Kumar P, Nagarajan A, Uchil PD, 2018, Analysis of cell
               https://doi.org/10.1111/j.1365-2818.1969.tb00709.x  viability by the MTT assay. Cold Spring Harb Protoc, 2018:
            56.  Ulmer K, Honjo S, 1973, Quantitative evaluation of fixation   pdb.prot095505.
               and dehydration methods for scanning electron microscopic   68.  Alimohamadi M, Ownagh V, Mahouzi L, et al., 2014, The
               preparation of soft sea water organisms. In: Proceeding   impact of immunohistochemical markers of ki-67 and p53
               6  annual SEM symposium, p365.                     on the Long-term outcome of growth Hormone-secreting
                th
            57.  Bessis M, Weed R, 1972, Preparation of red blood cells   pituitary  adenomas: A cohort  study.  Asian  J  Neurosurg,
               (RBC) for SEM. A survey of various artifacts. Scan Electron   9:130–136.
               Microsc, 1: 290–296.                               https://doi.org/10.4103/1793-5482.142732
            58.  Waterman  RE,  1972,  Use  of  the  scanning  electron   69.  El Badawi ZH, Muhammad EM, Noaman HH, 2015,
               microscope for observation of vertebrate embryos. Dev Biol,   Utility of Ki-67 labeling index in the differential diagnosis
               27: 276–81.                                        of osteogenic bone tumors.  Al-Azhar Assiut Med J, 13:
               https://doi.org/10.1016/0012-1606(72)90103-0       1687–1693.


            Volume 9 Issue 1 (2023)                         34                      https://doi.org/10.18063/ijb.v9i1.623
   37   38   39   40   41   42   43   44   45   46   47