Page 70 - IJB-9-1
P. 70
International Journal of Bioprinting In situ defect detection and feedback control with P-OCT
process feedback in extrusion-based 3D bioprinting. https://doi.org/10.1016/j.addma.2017.08.003
Biofabrication, 12: 015017.
18. Armstrong AA, Alleyne AG, Johnson AJ, 2020, 1D and
https://doi.org/10.1088/1758-5090/ab4d97 2D error assessment and correction for extrusion-based
bioprinting using process sensing and control strategies.
7. Vaezi M, Zhong G, Kalami H, et al., 2018, Extrusion-based
3D printing technologies for 3Dscaffold engineering. Funct Biofabrication, 12: 045023.
3D Tissue Eng Scaffolds, 235–254. https://doi.org/10.1088/1758-5090/aba8ee
https://doi.org/10.1016/b978-0-08-100979-6.00010-0 19. Yang S, Wang L, Chen Q, et al., 2021, In Situ process
monitoring and automated multi-parameter evaluation
8. Derakhshanfar S, Mbeleck R, Xu K, et al., 2018, 3D bioprinting
for biomedical devices and tissue engineering: A review of using optical coherence tomography during extrusion-
recent trends and advances. Bioact Mater, 3: 144–156. based bioprinting. Addit Manuf, 47: 102251.
https://doi.org/10.1016/j.addma.2021.102251
https://doi.org/10.1016/j.bioactmat.2017.11.008
20. Fujimoto JG, Pitris C, Boppart SA, et al., 2000, Optical
9. Rustom LE, Boudou T, Nemke BW, et al., 2017, Multiscale
porosity directs bone regeneration in biphasic calcium coherence tomography: An emerging technology for
phosphate scaffolds. Acs Biomater Sci Eng, 3: 2768–2778. biomedical imaging and optical biopsy. Neoplasia, 2: 9–25.
https://doi.org/10.1038/sj.neo.7900071
https://doi.org/10.1021/acsbiomaterials.6b00632
21. DePond PJ, Guss G, Ly S, et al., 2018, In Situ measurements
10. Baji A, Wong SC, Srivatsan TS, et al., 2006, Processing
methodologies for polycaprolactone-hydroxyapatite of layer roughness during laser powder bed fusion
composites: A review. Mater Manuf Process, 21: 211–218. additive manufacturing using low coherence scanning
interferometry. Mater Des, 154: 347–359.
https://doi.org/10.1081/amp-200068681
https://doi.org/10.1016/j.matdes.2018.05.050
11. Ji K, Wang Y, Wei Q, et al., 2018, Application of 3D printing
technology in bone tissue engineering. BioDes Manuf, 1: 22. Armstrong AA, Pfeil A, Alleyne AG, et al., 2021, Process
203–210. monitoring and control strategies in extrusion-based
bioprinting to fabricate spatially graded structures.
https://doi.org/10.1007/s42242-018-0021-2 Bioprinting, 21: e00126.
12. Heinrich MA, Bansal R, Lammers T, et al., 2019, 3D-bioprinted https://doi.org/10.1016/j.bprint.2020.e00126
mini-brain: A glioblastoma model to study cellular
interactions and therapeutics. Adv Mater, 31: e1806590. 23. Goh GD, Hamzah NM, Yeong WY, 2022, Anomaly detection
in fused filament fabrication using machine learning. 3D
https://doi.org/10.1002/adma.201806590 Print Addit Manuf. Ahead of print
13. Simeunović A, Hoelzle DJ, 2020, Nonlinear and linearized https://doi.org/10.1089/3dp.2021.0231
gray box models of direct-write printing dynamics. Rapid
Prototyp J, 26: 1665–76. 24. Jin Z, Zhang Z, Shao X, et al., 2021, Monitoring anomalies
in 3D bioprinting with deep neural networks. ACS Biomater
https://doi.org/10.1108/rpj-12-2018-0303 Sci Eng, 40: 33.
14. Aloisi V, Carmignato S, 2016, Influence of Surface https://doi.org/10.1021/acsbiomaterials.0c01761
Roughness on X-Ray Computed Tomography Dimensional
Measurements of Additive Manufactured Parts. Case Stud 25. Yang Q, Gao B, Xu F, 2020, Recent advances in 4D
Nondestruct Test Eval, 66:104–10. bioprinting. Biotechnol J, 15: e1900086.
https://doi.org/10.1002/biot.201900086
https://doi.org/10.1016/j.csndt.2016.05.005
26. Gao B, Yang Q, Zhao X, et al., 2016, 4D bioprinting for
15. Ma Y, Ji Y, Zhong T, et al., 2017, Bioprinting-based
PDLSC-ECM screening for in vivo repair of alveolar bone biomedical applications. Trends Biotechnol, 34: 746–756.
defect using cell-laden, injectable and photocrosslinkable https://doi.org/10.1016/j.tibtech.2016.03.004
hydrogels. ACS Biomater Sci Eng, 3: 3534–3545.
27. Ji Y, Yang Q, Huang G, et al., 2019, Improved resolution and
https://doi.org/10.1021/acsbiomaterials.7b00601 fidelity of droplet-based bioprinting by upward ejection.
ACS Biomater Sci Eng, 5: 4112–4121.
16. Morozov EV, Novikov MM, Bouznik VM, 2016, MRI monitoring
and non-destructive quality measurement of polymeric patterns https://doi.org/10.1021/acsbiomaterials.9b00400
manufactured via stereolithography. Addit Manuf, 12: 16–24.
28. Qing H, Ji Y, Li W, et al., 2020, Microfluidic printing of three-
https://doi.org/10.1016/j.addma.2016.05.015 dimensional graphene electroactive microfibrous scaffolds.
ACS Appl Mater Interfaces, 12: 2049–2058.
17. Holzmond O, Li X, 2017, In Situ real time defect detection of
3D printed parts. Addit Manuf, 17: 135–142. https://doi.org/10.1021/acsami.9b17948
Volume 9 Issue 1 (2023) 62 https://doi.org/10.18063/ijb.v9i1.624

