Page 70 - IJB-9-1
P. 70

International Journal of Bioprinting                     In situ defect detection and feedback control with P-OCT


               process feedback in extrusion-based 3D bioprinting.      https://doi.org/10.1016/j.addma.2017.08.003
               Biofabrication, 12: 015017.
                                                               18.  Armstrong AA, Alleyne AG, Johnson AJ, 2020, 1D and
               https://doi.org/10.1088/1758-5090/ab4d97           2D error assessment and correction for extrusion-based
                                                                  bioprinting using process sensing and control strategies.
            7.   Vaezi M, Zhong G, Kalami H, et al., 2018, Extrusion-based
               3D printing technologies for 3Dscaffold engineering. Funct   Biofabrication, 12: 045023.
               3D Tissue Eng Scaffolds, 235–254.                  https://doi.org/10.1088/1758-5090/aba8ee
               https://doi.org/10.1016/b978-0-08-100979-6.00010-0  19.  Yang  S,  Wang  L,  Chen  Q,  et al.,  2021,  In Situ  process
                                                                  monitoring and automated multi-parameter evaluation
            8.   Derakhshanfar S, Mbeleck R, Xu K, et al., 2018, 3D bioprinting
               for biomedical devices and tissue engineering: A review of   using optical coherence tomography during extrusion-
               recent trends and advances. Bioact Mater, 3: 144–156.  based bioprinting. Addit Manuf, 47: 102251.
                                                                  https://doi.org/10.1016/j.addma.2021.102251
               https://doi.org/10.1016/j.bioactmat.2017.11.008
                                                               20.  Fujimoto JG, Pitris C, Boppart SA,  et al., 2000, Optical
            9.   Rustom LE, Boudou T, Nemke BW, et al., 2017, Multiscale
               porosity directs bone  regeneration in biphasic  calcium   coherence tomography: An emerging technology for
               phosphate scaffolds. Acs Biomater Sci Eng, 3: 2768–2778.  biomedical imaging and optical biopsy. Neoplasia, 2: 9–25.
                                                                  https://doi.org/10.1038/sj.neo.7900071
               https://doi.org/10.1021/acsbiomaterials.6b00632
                                                               21.  DePond PJ, Guss G, Ly S, et al., 2018, In Situ measurements
            10.  Baji A, Wong SC, Srivatsan TS,  et al., 2006, Processing
               methodologies  for  polycaprolactone-hydroxyapatite  of layer roughness during laser powder bed fusion
               composites: A review. Mater Manuf Process, 21: 211–218.  additive manufacturing using low coherence scanning
                                                                  interferometry. Mater Des, 154: 347–359.
               https://doi.org/10.1081/amp-200068681
                                                                  https://doi.org/10.1016/j.matdes.2018.05.050
            11.  Ji K, Wang Y, Wei Q, et al., 2018, Application of 3D printing
               technology in bone tissue engineering.  BioDes Manuf, 1:   22.  Armstrong AA, Pfeil A, Alleyne AG, et al., 2021, Process
               203–210.                                           monitoring  and  control  strategies  in  extrusion-based
                                                                  bioprinting to fabricate spatially graded structures.
               https://doi.org/10.1007/s42242-018-0021-2          Bioprinting, 21: e00126.
            12.  Heinrich MA, Bansal R, Lammers T, et al., 2019, 3D-bioprinted      https://doi.org/10.1016/j.bprint.2020.e00126
               mini-brain:  A glioblastoma  model  to  study  cellular
               interactions and therapeutics. Adv Mater, 31: e1806590.  23.  Goh GD, Hamzah NM, Yeong WY, 2022, Anomaly detection
                                                                  in  fused  filament  fabrication  using  machine  learning.  3D
               https://doi.org/10.1002/adma.201806590             Print Addit Manuf. Ahead of print
            13.  Simeunović A, Hoelzle DJ, 2020, Nonlinear and linearized      https://doi.org/10.1089/3dp.2021.0231
               gray box models of direct-write printing dynamics. Rapid
               Prototyp J, 26: 1665–76.                        24.  Jin Z, Zhang Z, Shao X, et al., 2021, Monitoring anomalies
                                                                  in 3D bioprinting with deep neural networks. ACS Biomater
               https://doi.org/10.1108/rpj-12-2018-0303           Sci Eng, 40: 33.
            14.  Aloisi  V,  Carmignato  S,  2016,  Influence  of  Surface      https://doi.org/10.1021/acsbiomaterials.0c01761
               Roughness on X-Ray Computed Tomography Dimensional
               Measurements of Additive Manufactured Parts. Case Stud   25.  Yang Q, Gao B, Xu F, 2020, Recent advances in 4D
               Nondestruct Test Eval, 66:104–10.                  bioprinting. Biotechnol J, 15: e1900086.
                                                                  https://doi.org/10.1002/biot.201900086
               https://doi.org/10.1016/j.csndt.2016.05.005
                                                               26.  Gao B, Yang Q, Zhao X,  et al., 2016, 4D bioprinting for
            15.  Ma Y, Ji Y, Zhong T,  et al., 2017, Bioprinting-based
               PDLSC-ECM screening for in vivo repair of alveolar bone   biomedical applications. Trends Biotechnol, 34: 746–756.
               defect using cell-laden, injectable and photocrosslinkable      https://doi.org/10.1016/j.tibtech.2016.03.004
               hydrogels. ACS Biomater Sci Eng, 3: 3534–3545.
                                                               27.  Ji Y, Yang Q, Huang G, et al., 2019, Improved resolution and
               https://doi.org/10.1021/acsbiomaterials.7b00601    fidelity of droplet-based bioprinting by upward ejection.
                                                                  ACS Biomater Sci Eng, 5: 4112–4121.
            16.  Morozov EV, Novikov MM, Bouznik VM, 2016, MRI monitoring
               and non-destructive quality measurement of polymeric patterns      https://doi.org/10.1021/acsbiomaterials.9b00400
               manufactured via stereolithography. Addit Manuf, 12: 16–24.
                                                               28.  Qing H, Ji Y, Li W, et al., 2020, Microfluidic printing of three-
               https://doi.org/10.1016/j.addma.2016.05.015        dimensional graphene electroactive microfibrous scaffolds.
                                                                  ACS Appl Mater Interfaces, 12: 2049–2058.
            17.  Holzmond O, Li X, 2017, In Situ real time defect detection of
               3D printed parts. Addit Manuf, 17: 135–142.        https://doi.org/10.1021/acsami.9b17948



            Volume 9 Issue 1 (2023)                         62                      https://doi.org/10.18063/ijb.v9i1.624
   65   66   67   68   69   70   71   72   73   74   75