Page 79 - IJB-9-1
P. 79
International Journal of Bioprinting Osteoconduction and scaffold directionality
24. Crump SS, 1992, Apparatus und method for creating tree- https://doi.org/10.1089/ten.TEA.2018.0014
dimensional objects. Patent, No. 5121329.
33. Agrawal L, Saidani M, Guillaud L, et al., 2021, Development
25. Millán AJ, Santacruz I, Sánchez-Herencia AJ, et al., 2002, of 3D culture scaffolds for directional neuronal growth using
Gel-extrusion: A new continuous forming technique. Adv 2-photon lithography. Mater Sci Eng C, 131: 112502.
Eng Mater, 4(12): 913–915.
https://doi.org/10.1016/j.msec.2021.112502
https://doi.org/10.1002/adem.200290002
34. Ghayor C, Bhattacharya I, Guerrero J, et al., 2022, 3D-printed
26. Vozzi G, Previti A, De Rossi D, et al., 2002, Microsyringe- HA-based scaffolds for bone regeneration: Microporosity,
based deposition of two-dimensional and three-dimensional osteoconduction and osteoclastic resorption. Materials,
polymer scaffolds with a well-defined geometry for application 15(4): 1433.
to tissue engineering. Tissue Eng, 8(6): 1089–1098.
35. Klenke FM, Liu Y, Yuan H, et al., 2008, Impact of pore size
https://doi.org/10.1089/107632702320934182 on the vascularization and osseointegration of ceramic bone
substitutes in vivo. J Biomed Mater Res A, 85(3): 777–786.
27. Hutmacher DW, Schantz T, Zein I, et al., 2001, Mechanical
properties and cell cultural response of polycaprolactone https://doi.org/10.1002/jbm.a.31559
scaffolds designed and fabricated via fused deposition 36. Mastrullo V, Cathery W, Velliou E, et al., 2020, Angiogenesis
modeling. J Biomed Mater Res, 55: 203–216.
in tissue engineering: As nature intended? Front Bioeng
28. Schantz JT, Lim TC, Ning C, et al., 2006, Cranioplasty Biotechnol, 8: 188.
after trephination using a novel biodegradable burr hole https://doi.org/10.3389/fbioe.2020.00188
cover: Technical case report. Neurosurgery, 58(1 Suppl):
ONS-E176; discussion ONS-E176. 37. Yang G, Mahadik B, Choi JY, et al., 2020, Vascularization
in tissue engineering: Fundamentals and state-of-art. Prog
https://doi.org/10.1227/01.NEU.0000193533.54580.3F
Biomed Eng (Bristol), 2(1): 012002.
29. Lin C, Wang Y, Huang Z, et al., 2021, Advances in filament https://doi.org/10.1088/2516-1091/ab5637
structure of 3D bioprinted biodegradable bone repair
scaffolds. Int J Bioprint [Internet], 7(4): 426. 38. Wu F, Yang J, Ke X, et al., 2022, Integrating pore architectures
to evaluate vascularization efficacy in silicate-based
https://doi.org/10.18063/ijb.v7i4.426
bioceramic scaffolds. Regen Biomater [Internet]. 9: rbab077.
30. Ghayor C, Chen TH, Bhattacharya I, et al., 2020, https://doi.org/10.1093/rb/rbab077
Microporosities in 3D-printed tricalcium-phosphate-
based bone substitutes enhance osteoconduction and affect 39. de Wild M, Ghayor C, Zimmermann S, et al., 2019,
osteoclastic resorption. Int J Mol Sci, 21(23): 9270. Osteoconductive lattice microarchitecture for optimized
bone regeneration. 3D Print Addit Manuf, 6(1): 40–49.
https://doi.org/10.3390/ijms21239270
https://doi.org/10.1089/3dp.2017.0129
31. de Wild M, Zimmermann S, Ruegg J, et al., 2016, Influence
of microarchitecture on osteoconduction and mechanics 40. Huber F, Vollmer D, Vinke J, et al., 2022, Influence of 3D
of porous titanium scaffolds generated by selective laser printing parameters on the mechanical stability of PCL
melting. 3d Print Addit Manuf, 3(3): 142–151. scaffolds and the proliferation behavior of bone cells.
Materials (Basel, Switzerland) [Internet]. 15(6): 2091.
https://doi.org/10.1089/3dp.2016.0004
https://doi.org/10.3390/ma15062091
32. Chen TH, Ghayor C, Siegenthaler B, et al., 2018, Lattice
microarchitecture for bone tissue engineering from calcium
phosphate compared to titanium. Tissue Eng Part A,
24(19–20): 1554–1561.
V
Volume 9 Issue 1 (2023)olume 9 Issue 1 (2023) 71 https://doi.org/10.18063/ijb.v9i1.626

