Page 79 - IJB-9-1
P. 79

International Journal of Bioprinting                               Osteoconduction and scaffold directionality



            24.  Crump SS, 1992, Apparatus und method for creating tree-  https://doi.org/10.1089/ten.TEA.2018.0014
               dimensional objects. Patent, No. 5121329.
                                                               33.  Agrawal L, Saidani M, Guillaud L, et al., 2021, Development
            25.  Millán AJ, Santacruz I, Sánchez-Herencia AJ, et al., 2002,   of 3D culture scaffolds for directional neuronal growth using
               Gel-extrusion: A new continuous forming technique. Adv   2-photon lithography. Mater Sci Eng C, 131: 112502.
               Eng Mater, 4(12): 913–915.
                                                                  https://doi.org/10.1016/j.msec.2021.112502
               https://doi.org/10.1002/adem.200290002
                                                               34.  Ghayor C, Bhattacharya I, Guerrero J, et al., 2022, 3D-printed
            26.  Vozzi G, Previti A, De Rossi D, et al., 2002, Microsyringe-  HA-based scaffolds for bone regeneration: Microporosity,
               based deposition of two-dimensional and three-dimensional   osteoconduction and osteoclastic resorption.  Materials,
               polymer scaffolds with a well-defined geometry for application   15(4): 1433.
               to tissue engineering. Tissue Eng, 8(6): 1089–1098.
                                                               35.  Klenke FM, Liu Y, Yuan H, et al., 2008, Impact of pore size
               https://doi.org/10.1089/107632702320934182         on the vascularization and osseointegration of ceramic bone
                                                                  substitutes in vivo. J Biomed Mater Res A, 85(3): 777–786.
            27.  Hutmacher DW, Schantz T, Zein I, et al., 2001, Mechanical
               properties and cell cultural response of polycaprolactone   https://doi.org/10.1002/jbm.a.31559
               scaffolds designed and fabricated via fused deposition   36.  Mastrullo V, Cathery W, Velliou E, et al., 2020, Angiogenesis
               modeling. J Biomed Mater Res, 55: 203–216.
                                                                  in tissue engineering: As nature intended?  Front Bioeng
            28.  Schantz JT, Lim TC, Ning C, et al., 2006, Cranioplasty   Biotechnol, 8: 188.
               after trephination using a novel biodegradable burr hole   https://doi.org/10.3389/fbioe.2020.00188
               cover: Technical case report.  Neurosurgery, 58(1 Suppl):
               ONS-E176; discussion ONS-E176.                  37.  Yang G, Mahadik B, Choi JY, et al., 2020, Vascularization
                                                                  in tissue engineering: Fundamentals and state-of-art. Prog
               https://doi.org/10.1227/01.NEU.0000193533.54580.3F
                                                                  Biomed Eng (Bristol), 2(1): 012002.
            29.  Lin C, Wang Y, Huang Z, et al., 2021, Advances in filament   https://doi.org/10.1088/2516-1091/ab5637
               structure of 3D bioprinted biodegradable bone repair
               scaffolds. Int J Bioprint [Internet], 7(4): 426.  38.  Wu F, Yang J, Ke X, et al., 2022, Integrating pore architectures
                                                                  to  evaluate  vascularization  efficacy  in  silicate-based
               https://doi.org/10.18063/ijb.v7i4.426
                                                                  bioceramic scaffolds. Regen Biomater [Internet]. 9: rbab077.
            30.  Ghayor C, Chen TH, Bhattacharya I, et al., 2020,   https://doi.org/10.1093/rb/rbab077
               Microporosities in 3D-printed tricalcium-phosphate-
               based bone substitutes enhance osteoconduction and affect   39.  de Wild M, Ghayor C, Zimmermann S, et al., 2019,
               osteoclastic resorption. Int J Mol Sci, 21(23): 9270.  Osteoconductive lattice microarchitecture for optimized
                                                                  bone regeneration. 3D Print Addit Manuf, 6(1): 40–49.
               https://doi.org/10.3390/ijms21239270
                                                                  https://doi.org/10.1089/3dp.2017.0129
            31.  de Wild M, Zimmermann S, Ruegg J, et al., 2016, Influence
               of microarchitecture on osteoconduction and mechanics   40.  Huber F, Vollmer D, Vinke J, et al., 2022, Influence of 3D
               of porous titanium scaffolds  generated by selective  laser   printing parameters on the mechanical stability of PCL
               melting. 3d Print Addit Manuf, 3(3): 142–151.      scaffolds and the proliferation behavior of bone cells.
                                                                  Materials (Basel, Switzerland) [Internet]. 15(6): 2091.
               https://doi.org/10.1089/3dp.2016.0004
                                                                  https://doi.org/10.3390/ma15062091
            32.  Chen  TH,  Ghayor C,  Siegenthaler  B, et al.,  2018, Lattice
               microarchitecture for bone tissue engineering from calcium
               phosphate compared to titanium.  Tissue Eng Part A,
               24(19–20): 1554–1561.




















            V
            Volume 9 Issue 1 (2023)olume 9 Issue 1 (2023)   71                      https://doi.org/10.18063/ijb.v9i1.626
   74   75   76   77   78   79   80   81   82   83   84