Page 78 - IJB-9-1
P. 78
International Journal of Bioprinting Osteoconduction and scaffold directionality
Consent for publication 11. Tsuruga E, Takita H, Itoh H, et al., 1997, Pore size of porous
hydroxyapatite as the cell-substratum controls BMP-
Not applicable. induced osteogenesis. J Biochem, 121(2): 317–324.
Availability of data 12. von Doernberg M-C, von Rechenberg B, Bohner M, et al.,
2006, In vivo behavior of calcium phosphate scaffolds with
Data are available after finalization of this project upon four different pore sizes. Biomaterials, 27(30): 5186–5198.
request to FEW via franz.weber@zzm.uzh.ch. http://dx.doi.org/10.1016/j.biomaterials.2006.05.051
References 13. Ghayor C, Weber FE, 2018, Osteoconductive
microarchitecture of bone substitutes for bone regeneration
revisited. Front Physiol, 9: 960.
1. Weber FE, 2019, Reconsidering osteoconduction in the era of
additive manufacturing. Tissue Eng Part B Rev, 25(5): 375–386. https://doi.org/10.3389/fphys.2018.00960
https://doi.org/10.1089/ten.TEB.2019.0047 14. Cornell CN, Lane JM, 1998, Current understanding of
osteoconduction in bone regeneration. Clin Orthop Relat
2. de Wild M, Schumacher R, Mayer K, et al., 2013, Bone
regeneration by the osteoconductivity of porous titanium Res, 355: S267–S273.
implants manufactured by selective laser melting: A 15. Urist MR, 1976, Practical applications of basic research on
histological and micro computed tomography study in the bone graft physiology. The American Academy of Orthopaedic
rabbit. Tissue Eng Part A, 19(23–24): 2645–2654. Surgeons: Instructional Course Lectures, Vol XXV, The C.V.
https://doi.org/10.1089/ten.TEA.2012.0753 Mosby Company, St Louis, 1–26.
16. Li J, Liu Y, Zhang Y, et al., 2021, Biophysical and biochemical
3. Sears NA, Seshadri DR, Dhavalikar PS, et al., 2016, A review cues of biomaterials guide mesenchymal stem cell behaviors.
of three-dimensional printing in tissue engineering. Tissue Front Cell Dev Biol, 9: 640388.
Eng Part B Rev, 22(4): 298–310.
https://doi.org/10.3389/fcell.2021.640388
https://doi.org/10.1089/ten.TEB.2015.0464
4. Brunello G, Sivolella S, Meneghello R, et al., 2016, Powder- 17. Horwitz R, Webb D, 2003, Cell migration. Curr Biol, 13(19):
based 3D printing for bone tissue engineering. Biotechnol R756–R759.
Adv, 34(5): 740–753. https://doi.org/10.1016/j.cub.2003.09.014
https://doi.org/10.1016/j.biotechadv.2016.03.009 18. Mayor R, Etienne-Manneville S, 2016, The front and rear of
5. Sachs E, Cima M, Cornie J, 1990, Three-dimensional collective cell migration. Nat Rev Mol Cell Biol, 17(2): 97–109.
printing: Rapid tooling and prototypes directly from a CAD https://doi.org/10.1038/nrm.2015.14
model. CIRP Ann Manuf Technol, 39(1): 201–204.
19. Schwartz MA, Horwitz AR, 2006, Integrating adhesion,
http://dx.doi.org/10.1016/S0007-8506(07)61035-X protrusion, and contraction during cell migration. Cell,
6. Butscher A, Bohner M, Doebelin N, et al., 2013, New 125(7): 1223–1225.
depowdering-friendly designs for three-dimensional https://doi.org/10.1016/j.cell.2006.06.015
printing of calcium phosphate bone substitutes. Acta 20. Qian T, Wang Y, 2010, Micro/nano-fabrication technologies
Biomater, 9(11): 9149–9158.
for cell biology. Med Biol Eng Comput, 48(10): 1023–1032.
http://dx.doi.org/10.1016/j.actbio.2013.07.019
https://doi.org/10.1007/s11517-010-0632-z
7. Butscher A, Bohner M, Roth C, et al., 2012, Printability of
calcium phosphate powders for three-dimensional printing 21. Diloksumpan P, Bolaños RV, Cokelaere S, et al., 2020,
of tissue engineering scaffolds. Acta Biomater, 8: 373–385. Orthotopic bone regeneration within 3D printed bioceramic
scaffolds with region-dependent porosity gradients in an
8. Karageorgiou V, Kaplan D, 2005, Porosity of 3D biomaterial equine model. Adv Healthc Mater, 9(10): 1901807.
scaffolds and osteogenesis. Biomaterials, 26(27): 5474–5491.
https://doi.org/10.1002/adhm.201901807
https://doi.org/10.1016/j.biomaterials.2005.02.002
22. Xue J, Wu T, Xia Y, 2018, Perspective: Aligned arrays of
9. Kuboki Y, Jin Q, Takita H, 2001, Geometry of carriers electrospun nanofibers for directing cell migration. APL
controlling phenotypic expression in BMP-induced Mater, 6(12): 120902.
osteogenesis and chondrogenesis. J Bone Joint Surg (Am https://doi.org/10.1063/1.5058083
Vol), 83-A Suppl 1(Pt 2): S105–S115.
23. Berner A, Woodruff MA, Lam CX, et al., 2014, Effects of
10. Kuboki Y, Takita H, Kobayashi D, et al., 1998, BMP-
induced osteogenesis on the surface of hydroxyapatite with scaffold architecture on cranial bone healing. Int J Oral
geometrically feasible and nonfeasible structures: Topology Maxillofac Surg, 43(4): 506–513.
of osteogenesis. J Biomed Mater Res, 39(2): 190–199. https://doi.org/10.1016/j.ijom.2013.05.008
V
Volume 9 Issue 1 (2023)olume 9 Issue 1 (2023) 70 https://doi.org/10.18063/ijb.v9i1.626

