Page 78 - IJB-9-1
P. 78

International Journal of Bioprinting                               Osteoconduction and scaffold directionality



            Consent for publication                            11.  Tsuruga E, Takita H, Itoh H, et al., 1997, Pore size of porous
                                                                  hydroxyapatite as the cell-substratum controls BMP-
            Not applicable.                                       induced osteogenesis. J Biochem, 121(2): 317–324.

            Availability of data                               12.  von Doernberg M-C, von Rechenberg B, Bohner M, et al.,
                                                                  2006, In vivo behavior of calcium phosphate scaffolds with
            Data are available after finalization of this project upon   four different pore sizes. Biomaterials, 27(30): 5186–5198.
            request to FEW via franz.weber@zzm.uzh.ch.            http://dx.doi.org/10.1016/j.biomaterials.2006.05.051

            References                                         13.  Ghayor  C,  Weber  FE,  2018,  Osteoconductive
                                                                  microarchitecture of bone substitutes for bone regeneration
                                                                  revisited. Front Physiol, 9: 960.
            1.   Weber FE, 2019, Reconsidering osteoconduction in the era of
               additive manufacturing. Tissue Eng Part B Rev, 25(5): 375–386.  https://doi.org/10.3389/fphys.2018.00960
               https://doi.org/10.1089/ten.TEB.2019.0047       14.  Cornell CN, Lane JM, 1998, Current understanding of
                                                                  osteoconduction in bone regeneration.  Clin Orthop Relat
            2.   de Wild M, Schumacher R, Mayer K, et  al., 2013, Bone
               regeneration by the osteoconductivity of porous titanium   Res, 355: S267–S273.
               implants manufactured by selective laser melting: A   15.  Urist MR, 1976, Practical applications of basic research on
               histological and micro computed tomography study in the   bone graft physiology. The American Academy of Orthopaedic
               rabbit. Tissue Eng Part A, 19(23–24): 2645–2654.   Surgeons: Instructional Course Lectures, Vol XXV, The C.V.
               https://doi.org/10.1089/ten.TEA.2012.0753          Mosby Company, St Louis, 1–26.
                                                               16.  Li J, Liu Y, Zhang Y, et al., 2021, Biophysical and biochemical
            3.   Sears NA, Seshadri DR, Dhavalikar PS, et al., 2016, A review   cues of biomaterials guide mesenchymal stem cell behaviors.
               of three-dimensional printing in tissue engineering. Tissue   Front Cell Dev Biol, 9: 640388.
               Eng Part B Rev, 22(4): 298–310.
                                                                  https://doi.org/10.3389/fcell.2021.640388
               https://doi.org/10.1089/ten.TEB.2015.0464
            4.   Brunello G, Sivolella S, Meneghello R, et al., 2016, Powder-  17.  Horwitz R, Webb D, 2003, Cell migration. Curr Biol, 13(19):
               based 3D printing for bone tissue engineering. Biotechnol   R756–R759.
               Adv, 34(5): 740–753.                               https://doi.org/10.1016/j.cub.2003.09.014
               https://doi.org/10.1016/j.biotechadv.2016.03.009  18.  Mayor R, Etienne-Manneville S, 2016, The front and rear of
            5.   Sachs E, Cima M, Cornie J, 1990, Three-dimensional   collective cell migration. Nat Rev Mol Cell Biol, 17(2): 97–109.
               printing: Rapid tooling and prototypes directly from a CAD   https://doi.org/10.1038/nrm.2015.14
               model. CIRP Ann Manuf Technol, 39(1): 201–204.
                                                               19.  Schwartz MA, Horwitz AR, 2006, Integrating adhesion,
               http://dx.doi.org/10.1016/S0007-8506(07)61035-X    protrusion, and contraction during cell migration.  Cell,
            6.   Butscher A, Bohner M, Doebelin N, et al., 2013, New   125(7): 1223–1225.
               depowdering-friendly designs for three-dimensional   https://doi.org/10.1016/j.cell.2006.06.015
               printing of calcium phosphate bone substitutes.  Acta   20.  Qian T, Wang Y, 2010, Micro/nano-fabrication technologies
               Biomater, 9(11): 9149–9158.
                                                                  for cell biology. Med Biol Eng Comput, 48(10): 1023–1032.
               http://dx.doi.org/10.1016/j.actbio.2013.07.019
                                                                  https://doi.org/10.1007/s11517-010-0632-z
            7.   Butscher A, Bohner M, Roth C, et al., 2012, Printability of
               calcium phosphate powders for three-dimensional printing   21.  Diloksumpan P, Bolaños RV, Cokelaere S, et al., 2020,
               of tissue engineering scaffolds. Acta Biomater, 8: 373–385.  Orthotopic bone regeneration within 3D printed bioceramic
                                                                  scaffolds with region-dependent porosity gradients in an
            8.   Karageorgiou V, Kaplan D, 2005, Porosity of 3D biomaterial   equine model. Adv Healthc Mater, 9(10): 1901807.
               scaffolds and osteogenesis. Biomaterials, 26(27): 5474–5491.
                                                                  https://doi.org/10.1002/adhm.201901807
               https://doi.org/10.1016/j.biomaterials.2005.02.002
                                                               22.  Xue J, Wu T, Xia Y, 2018, Perspective: Aligned arrays of
            9.   Kuboki Y, Jin Q, Takita H, 2001, Geometry of carriers   electrospun nanofibers for directing cell migration.  APL
               controlling phenotypic  expression  in  BMP-induced   Mater, 6(12): 120902.
               osteogenesis and chondrogenesis.  J Bone Joint Surg (Am   https://doi.org/10.1063/1.5058083
               Vol), 83-A Suppl 1(Pt 2): S105–S115.
                                                               23.  Berner A, Woodruff MA, Lam CX, et al., 2014, Effects of
            10.  Kuboki Y, Takita H, Kobayashi D, et al., 1998, BMP-
               induced osteogenesis on the surface of hydroxyapatite with   scaffold architecture on cranial bone healing.  Int  J Oral
               geometrically feasible and nonfeasible structures: Topology   Maxillofac Surg, 43(4): 506–513.
               of osteogenesis. J Biomed Mater Res, 39(2): 190–199.   https://doi.org/10.1016/j.ijom.2013.05.008


            V
            Volume 9 Issue 1 (2023)olume 9 Issue 1 (2023)   70                      https://doi.org/10.18063/ijb.v9i1.626
   73   74   75   76   77   78   79   80   81   82   83