Page 124 - IJB-9-2
P. 124
International Journal of Bioprinting Photocurable pullulan-based bioink for 3D printing
18. Ouyang L, Highley CB, Rodell CB, et al., 2016, 3D printing 32. Huang Y, Hu H, Li RQ, et al., 2016, Versatile types of
of shear-thinning hyaluronic acid hydrogels with secondary MRI-visible cationic nanoparticles involving pullulan
cross-linking. ACS Biomater Sci Eng, 2(10): 1743–1751. polysaccharides for multifunctional gene carriers. ACS Appl
Mater Int, 8(6): 3919–3927.
19. Bavaresco B, Comín R, Salvatierra NA, et al., 2020, Three-
dimensional printing of collagen and hyaluronic acid 33. Li H, Xue Y, Jia B, et al., 2018, The preparation of hyaluronic
scaffolds with dehydrothermal treatment crosslinking. acid grafted pullulan polymers and their use in the formation
Compos Commun, 19: 1–5. of novel biocompatible wound healing film. Carbohydr
20. Chen M, Feng Z, Guo W, et al., 2019, PCL-MECM-based Polym, 188: 92–100.
hydrogel hybrid scaffolds and meniscal fibrochondrocytes 34. Li S, Yi J, Yu X, et al., 2020, Preparation and characterization
promote whole meniscus regeneration in a rabbit meniscectomy of pullulan derivative/chitosan composite film for potential
model. ACS Appl Mater Int, 11(44): 41626–41639. antimicrobial applications. Int J Biol Macromol, 148: 258–264.
21. Yin J, Yan M, Wang Y, et al., 2018, 3D bioprinting of low- 35. Mommer S, Gehlen D, Akagi T, et al., 2021, Thiolactone-
concentration cell-laden gelatin methacrylate (GelMA) functional pullulan for in situ forming biogels.
bioinks with a two-step cross-linking strategy. ACS Appl Biomacromolecules, 22(10): 4262–4273.
Mater Int, 10(8): 6849–6857.
36. Shah SA, Sohail M, Minhas MU, et al., 2021, Curcumin-
22. Wulle F, Gorke O, Schmidt S, et al., 2022, Multi-axis 3D
printing of gelatin methacryloyl hydrogels on a non-planar laden hyaluronic acid-co-pullulan-based biomaterials as a
surface obtained from magnetic resonance imaging. Addit potential platform to synergistically enhance the diabetic
Manuf, 50: 102566. wound repair. Int J Biol Macromol, 185: 350–368.
23. Hong H, Seo YB, Kim DY, et al., 2020, Digital light 37. Della Giustina G, Gandin A, Brigo L, et al., 2019,
processing 3D printed silk fibroin hydrogel for cartilage Polysaccharide hydrogels for multiscale 3D printing of
tissue engineering. Biomaterials, 232: 119679. pullulan scaffolds. Mater Design, 165: 107566.
24. Xu C, Dai G, Hong Y, 2019, Recent advances in high- 38. Mugnaini G, Resta C, Poggi G, et al., 2021, Photopolymerizable
strength and elastic hydrogels for 3D printing in biomedical pullulan: Synthesis, self-assembly and inkjet printing. J Colloid
applications. Acta Biomater, 95: 50–59. Interface Sci, 592: 430–439.
25. Fan H, Gong JP, 2020, Fabrication of bioinspired hydrogels: 39. Zhao C, Wu Z, Chu H, et al., 2021, Thiol-rich multifunctional
Challenges and opportunities. Macromolecules, 53(8): macromolecular crosslinker for gelatin-norbornene-based
2769–2782. bioprinting. Biomacromolecules, 22(6): 2729–2739.
26. Kim SH, Oh S, Chae S, et al., 2019, Exceptional mechanical 40. Gockler T, Haase S, Kempter X, et al., 2021, Tuning superfast
properties of phase-separation-free Mo3Se3(-)-chain- curing thiol-norbornene-functionalized gelatin hydrogels
reinforced hydrogel prepared by polymer wrapping process. for 3D bioprinting. Adv Healthc Mater, 10(14): e2100206.
Nano Lett, 19(8): 5717–5724.
41. Guo K, Wang H, Li S, et al., 2021, Collagen-based thiol−
27. Yu C, Schimelman J, Wang P, et al., 2020, Photopolymerizable norbornene photoclick bio-ink with excellent bioactivity
biomaterials and light-based 3D printing strategies for and printability. ACS Appl Mater Int, 13: 7037–7050.
biomedical applications. Chem Rev, 120(19): 10695–10743.
42. Feng Z, Chen S, Abdullah A, et al., 2022, Ultra-high molecular
28. Schuurmans CCL, Mihajlovic M, Hiemstra C, et al., 2021, weight pullulan-based material with high deformability and
Hyaluronic acid and chondroitin sulfate (meth)acrylate-based shape-memory properties. Carbohyd Polym, 295: 119836.
hydrogels for tissue engineering: Synthesis, characteristics
and pre-clinical evaluation. Biomaterials, 268: 120602. 43. Riccardo R, Dominic R, Liu H, et al., 2021, Optimized photo
click (bio) resins for fast volumetric bioprinting. Adv Mater,
29. Akbaba S, Atila D, Keskin D, et al., 2021, Multilayer
fibroin/chitosan oligosaccharide lactate and pullulan 33(49): 2102900.
immunomodulatory patch for treatment of hernia and 44. Ouyang L, Christopher BH, Sun W, et al., 2017, A generalizable
prevention of intraperitoneal adhesion. Carbohydr Polym, strategy for the 3D bioprinting of hydrogels from nonviscous
265: 118066. photo-crosslinkable inks. Adv Mater, 29: 1604983.
30. Duan Y, Li K, Wang H, et al., 2020, Preparation and 45. Jason WN, Sandeep TK, Hojae B, et al., 2010, Cell-
evaluation of curcumin grafted hyaluronic acid modified laden microengineered gelatin methacrylate hydrogels.
pullulan polymers as a functional wound dressing material. Biomaterials, 31: 5536–5544.
Carbohydr Polym, 238: 116195.
46. Liu H, Deng Z, Li T, et al., 2022, Fabrication, GSH-
31. Ghorbani F, Zamanian A, Behnamghader A, et al., 2020, responsive drug release, and anticancer properties of thioctic
Bioactive and biostable hyaluronic acid-pullulan dermal acid-based intelligent hydrogels. Colloid Surfaces B, 217:
hydrogels incorporated with biomimetic hydroxyapatite 112703.
spheres. Mater Sci Eng C, 112: 110906.
Volume 9 Issue 2 (2023) 116 https://doi.org/10.18063/ijb.v9i2.657

