Page 26 - IJB-9-2
P. 26

International Journal of Bioprinting                                      Extrusion-based biomaterial inks



            Visualization: Xiaorui Li, Xudong Wang, Shudong Zhao,   8.   Park JY, Ryu H, Lee B,  et  al., 2019, Development of
               Dandan Dou                                         a functional airway-on-a-chip by 3D cell printing.
            Writing – original draft: Xiaorui Li                  Biofabrication, 11(1):015002.
            Writing – review & editing: Fuyin Zheng, Xudong Wang,   https://doi.org/10.1088/1758-5090/aae545
               Xuezheng Geng, Shudong Zhao, Hui Liu, Dandan    9.   Kolesky DB, Homan KA, Skylar-Scott MA, et al., 2016,
               Dou, Yubing Leng, Lizhen Wang, Yubo Fan            Three-dimensional bioprinting of thick vascularized tissues.
                                                                  Proc Natl Acad Sci USA, 113(12):3179–3184.
            Ethics approval and consent to participate
                                                                  https://doi.org/10.1073/pnas.1521342113
            Not applicable.
                                                               10.  Murphy SV, Atala A, 2014, 3D bioprinting of tissues and
                                                                  organs. Nat Biotechnol, 32(8):773–785.
            Consent for publication
                                                                  https://doi.org/10.1038/nbt.2958
            Not applicable.
                                                               11.  Jungst T, Smolan W, Schacht K, et al., 2016, Strategies and
            Availability of data                                  molecular design criteria for 3D printable hydrogels. Chem
                                                                  Rev, 116(3):1496–1539.
            Not applicable.                                       https://doi.org/10.1021/acs.chemrev.5b00303

            References                                         12.  Bedell ML, Navara AM, Du Y, et al., 2020, Polymeric systems
                                                                  for bioprinting. Chem Rev, 120(19):10744–10792.
            1.   Zheng F,  Fu F, Cheng  Y, et al., 2016,  Organ-on-a-chip   https://doi.org/10.1021/acs.chemrev.9b00834
               systems: Microengineering to biomimic living systems.
               Small, 12(17):2253–2282.                        13.  Hospodiuk M, Dey M, Sosnoski D, et al., 2017, The bioink: A
                                                                  comprehensive review on bioprintable materials. Biotechnol
               https://doi.org/10.1002/smll.201503208             Adv, 35(2):217–239.
            2.   Zheng F, Xiao Y, Liu H, et al., 2021, Patient‐specific organoid   https://doi.org/10.1016/j.biotechadv.2016.12.006
               and organ‐on‐a‐chip: 3D cell‐culture meets 3D printing and
               numerical simulation. Adv Biol, 5(6):2000024.   14.  Pati F, Jang J, Lee JW, et al., 2015, Extrusion bioprinting,
                                                                  in Essentials of 3D Biofabrication and Translation, Elsevier,
               https://doi.org/10.1002/adbi.202000024             123–152.
            3.   Rawal P, Tripathi DM, Ramakrishna S, et al., 2021, Prospects   15.  Zhang YS, Haghiashtiani G, Hübscher T, et al., 2021, 3D
               for 3D bioprinting of organoids. Biodesign Manuf, 4(3):   extrusion bioprinting. Nat Rev Methods Primers, 1(1):75.
               627–640.
                                                                  https://doi.org/10.1038/s43586-021-00073-8
               https://doi.org/10.1007/s42242-020-00124-1      16.  Ozbolat IT, Hospodiuk M, 2016, Current advances and
            4.   Grigoryan B, Paulsen SJ, Corbett DC,  et  al., 2019,   future  perspectives  in extrusion-based  bioprinting.
               Multivascular  networks  and functional  intravascular   Biomaterials, 76:321–343.
               topologies within biocompatible hydrogels. Science,   https://doi.org/10.1016/j.biomaterials.2015.10.076
               364(6439):458–464.
                                                               17.  Askari M, Afzali Naniz M, Kouhi M, et al., 2021, Recent
               https://doi.org/10.1126/science.aav9750            progress in extrusion 3D bioprinting of hydrogel biomaterials
            5.   Lee A, Hudson AR, Shiwarski DJ, et al., 2019, 3D bioprinting   for tissue regeneration: A comprehensive review with focus
               of collagen to rebuild components of the human heart.   on advanced fabrication techniques. Biomater Sci, 9(3):
               Science, 365(6452):482–487.                        535–573.
               https://doi.org/10.1126/science.aav9051            https://doi.org/10.1039/d0bm00973c
            6.   Groll  J,  Burdick  JA,  Cho  D-W, et al.,  2019,  A  definition   18.  Panwar A, Tan LP, 2016, Current status of bioinks for micro-
               of bioinks and their distinction from biomaterial inks.   extrusion-based 3D bioprinting. Molecules, 21(6):685.
               Biofabrication, 11(1):013001.                      https://doi.org/10.3390/molecules21060685
               https://doi.org/10.1088/1758-5090/aaec52        19.  Tarassoli SP, Jessop ZM, Jovic T, et al., 2021, Candidate
            7.   Das  S,  Kim  S-W,  Choi  Y-J, et al.,  2019,  Decellularized   bioinks for extrusion 3D bioprinting—A systematic review
               extracellular  matrix  bioinks  and  the  external  stimuli  to   of the literature. Front Bioeng Biotech, 9:616753.
               enhance cardiac tissue development in vitro. Acta Biomater,   https://doi.org/10.3389/fbioe.2021.616753
               95:188–200.
                                                               20.  Ojansivu M, Rashad A, Ahlinder A, et al., 2019, Wood-based
               https://doi.org/10.1016/j.actbio.2019.04.026       nanocellulose and bioactive glass modified gelatin-alginate


            Volume 9 Issue 2 (2023)                         18                      https://doi.org/10.18063/ijb.v9i2.649
   21   22   23   24   25   26   27   28   29   30   31