Page 27 - IJB-9-2
P. 27
International Journal of Bioprinting Extrusion-based biomaterial inks
bioinks for 3D bioprinting of bone cells. Biofabrication, 31. Parak A, Pradeep P, du Toit LC, et al., 2019, Functionalizing
11(3):035010. bioinks for 3D bioprinting applications. Drug Discov Today,
24(1):198–205.
https://doi.org/10.1088/1758-5090/ab0692
https://doi.org/10.1016/j.drudis.2018.09.012
21. Zeng X, Meng Z, He J, et al., 2022, Embedded bioprinting
for designer 3D tissue constructs with complex structural 32. Snyder JE, Hamid Q, Wang C, et al., 2011, Bioprinting cell-
organization. Acta Biomater, 140:1–22. laden matrigel for radioprotection study of liver by pro-drug
conversion in a dual-tissue microfluidic chip. Biofabrication,
https://doi.org/10.1016/j.actbio.2021.11.048
3(3):034112.
22. Colosi C, Shin SR, Manoharan V, et al., 2016, Microfluidic
bioprinting of heterogeneous 3D tissue constructs using https://doi.org/10.1088/1758-5082/3/3/034112
low‐viscosity bioink. Adv Mater, 28(4):677–684. 33. Fedorovich NE, Wijnberg HM, Dhert WJA, et al., 2011,
https://doi.org/10.1002/adma.201503310 Distinct tissue formation by heterogeneous printing of osteo-
and endothelial progenitor cells. Tissue Eng A, 17(15-16):
23. Ahn G, Min K-H, Kim C, et al., 2017, Precise stacking of 2113–2121.
decellularized extracellular matrix based 3D cell-laden
constructs by a 3D cell printing system equipped with https://doi.org/10.1089/ten.TEA.2011.0019
heating modules. Sci Rep-Uk, 7(1):8624. 34. Jorgensen AM, Chou Z, Gillispie G, et al., 2020,
https://doi.org/10.1038/s41598-017-09201-5 Decellularized skin extracellular matrix (dsECM) improves
the physical and biological properties of fibrinogen hydrogel
24. Ouyang L, Highley CB, Sun W, et al., 2017, A generalizable for skin bioprinting applications. Nanomaterials Basel,
strategy for the 3D bioprinting of hydrogels from nonviscous 10(8):1484.
photo-crosslinkable inks. Adv Mater, 29(8):1604983.
https://doi.org/10.3390/nano10081484
https://doi.org/10.1002/adma.201604983
35. Toprakhisar B, Nadernezhad A, Bakirci E, et al., 2018,
25. Gao Q, He Y, Fu J-z, et al., 2015, Coaxial nozzle-assisted Development of bioink from decellularized tendon
3D bioprinting with built-in microchannels for nutrients extracellular matrix for 3D bioprinting. Macromol Biosci,
delivery. Biomaterials, 61:203–215. 18(10):e1800024.
https://doi.org/10.1016/j.biomaterials.2015.05.031 https://doi.org/10.1002/mabi.201800024
26. Jin Y, Liu C, Chai W, et al., 2017, Self-supporting nanoclay as 36. Hiller T, Berg J, Elomaa L, et al., 2018, Generation of a
internal scaffold material for direct printing of soft hydrogel 3D liver model comprising human extracellular matrix in
composite structures in air. ACS Appl Mater Interfaces, an alginate/gelatin-based bioink by extrusion bioprinting
9(20):17456–17465. for infection and transduction studies. Int J Mol Sci,
https://doi.org/10.1021/acsami.7b03613 19(10):3129.
27. Pi Q, Maharjan S, Yan X, et al., 2018, Digitally tunable https://doi.org/10.3390/ijms19103129
microfluidic bioprinting of multilayered cannular tissues. 37. Skardal A, Devarasetty M, Kang H-W, et al., 2015, A hydrogel
Adv Mater, 30(43):1706913. bioink toolkit for mimicking native tissue biochemical and
https://doi.org/10.1002/adma.201706913 mechanical properties in bioprinted tissue constructs. Acta
Biomater, 25:24–34.
28. Zheng Z, Eglin D, Alini M, et al., 2021, Visible light-induced
3D bioprinting technologies and corresponding bioink https://doi.org/10.1016/j.actbio.2015.07.030
materials for tissue engineering: A review. Engineering, 38. Visscher DO, Lee H, van Zuijlen PPM, et al., 2021, A photo-
7(7):966–978. crosslinkable cartilage-derived extracellular matrix bioink
https://doi.org/10.1016/j.eng.2020.05.021 for auricular cartilage tissue engineering. Acta Biomater,
121:193–203.
29. Tabriz AG, Hermida MA, Leslie NR, et al., 2015, Three-
dimensional bioprinting of complex cell laden alginate https://doi.org/10.1016/j.actbio.2020.11.029
hydrogel structures. Biofabrication, 7(4):045012. 39. Gao G, Lee JH, Jang J, et al., 2017, Tissue engineered bio-
https://doi.org/10.1088/1758-5090/7/4/045012 blood-vessels constructed using a tissue-specific bioink
and 3D coaxial cell printing technique: A novel therapy for
30. Flores-Torres S, Peza-Chavez O, Kuasne H, et al., 2021, ischemic disease. Adv Funct Mater, 27(33):1700798.
Alginate-gelatin-Matrigel hydrogels enable the development
and multigenerational passaging of patient-derived https://doi.org/10.1002/adfm.201700798
3D bioprinted cancer spheroid models. Biofabrication, 40. Campos DFD, Blaeser A, Korsten A, et al., 2015, The stiffness
13(2):025001.
and structure of three-dimensional printed hydrogels direct
https://doi.org/10.1088/1758-5090/abdb87 the differentiation of mesenchymal stromal cells toward
Volume 9 Issue 2 (2023) 19 https://doi.org/10.18063/ijb.v9i2.649

