Page 27 - IJB-9-2
P. 27

International Journal of Bioprinting                                      Extrusion-based biomaterial inks



               bioinks  for  3D bioprinting  of  bone  cells. Biofabrication,   31.  Parak A, Pradeep P, du Toit LC, et al., 2019, Functionalizing
               11(3):035010.                                      bioinks for 3D bioprinting applications. Drug Discov Today,
                                                                  24(1):198–205.
               https://doi.org/10.1088/1758-5090/ab0692
                                                                  https://doi.org/10.1016/j.drudis.2018.09.012
            21.  Zeng X, Meng Z, He J, et al., 2022, Embedded bioprinting
               for designer 3D tissue constructs with complex structural   32.  Snyder JE, Hamid Q, Wang C, et al., 2011, Bioprinting cell-
               organization. Acta Biomater, 140:1–22.             laden matrigel for radioprotection study of liver by pro-drug
                                                                  conversion in a dual-tissue microfluidic chip. Biofabrication,
               https://doi.org/10.1016/j.actbio.2021.11.048
                                                                  3(3):034112.
            22.  Colosi C, Shin SR, Manoharan V, et al., 2016, Microfluidic
               bioprinting of heterogeneous 3D tissue constructs using   https://doi.org/10.1088/1758-5082/3/3/034112
               low‐viscosity bioink. Adv Mater, 28(4):677–684.  33.  Fedorovich NE, Wijnberg HM, Dhert WJA,  et al., 2011,
               https://doi.org/10.1002/adma.201503310             Distinct tissue formation by heterogeneous printing of osteo-
                                                                  and endothelial progenitor cells. Tissue Eng A, 17(15-16):
            23.  Ahn G, Min K-H, Kim C, et al., 2017, Precise stacking of   2113–2121.
               decellularized extracellular matrix based 3D cell-laden
               constructs by a 3D cell printing system equipped with   https://doi.org/10.1089/ten.TEA.2011.0019
               heating modules. Sci Rep-Uk, 7(1):8624.         34.  Jorgensen AM, Chou Z, Gillispie G, et al., 2020,
               https://doi.org/10.1038/s41598-017-09201-5         Decellularized skin extracellular matrix (dsECM) improves
                                                                  the physical and biological properties of fibrinogen hydrogel
            24.  Ouyang L, Highley CB, Sun W, et al., 2017, A generalizable   for skin bioprinting applications. Nanomaterials Basel,
               strategy for the 3D bioprinting of hydrogels from nonviscous   10(8):1484.
               photo-crosslinkable inks. Adv Mater, 29(8):1604983.
                                                                  https://doi.org/10.3390/nano10081484
               https://doi.org/10.1002/adma.201604983
                                                               35.  Toprakhisar B, Nadernezhad A, Bakirci E, et al., 2018,
            25.  Gao Q, He Y, Fu J-z, et al., 2015, Coaxial nozzle-assisted   Development of bioink from decellularized tendon
               3D bioprinting with built-in microchannels for nutrients   extracellular matrix for 3D bioprinting. Macromol Biosci,
               delivery. Biomaterials, 61:203–215.                18(10):e1800024.
               https://doi.org/10.1016/j.biomaterials.2015.05.031  https://doi.org/10.1002/mabi.201800024
            26.  Jin Y, Liu C, Chai W, et al., 2017, Self-supporting nanoclay as   36.  Hiller T, Berg J, Elomaa L, et al., 2018, Generation of a
               internal scaffold material for direct printing of soft hydrogel   3D liver model comprising human extracellular matrix in
               composite  structures  in  air. ACS Appl Mater Interfaces,   an alginate/gelatin-based bioink by extrusion bioprinting
               9(20):17456–17465.                                 for infection and transduction studies. Int J Mol Sci,
               https://doi.org/10.1021/acsami.7b03613             19(10):3129.
            27.  Pi Q, Maharjan S, Yan X,  et  al., 2018, Digitally tunable   https://doi.org/10.3390/ijms19103129
               microfluidic  bioprinting  of  multilayered  cannular  tissues.   37.  Skardal A, Devarasetty M, Kang H-W, et al., 2015, A hydrogel
               Adv Mater, 30(43):1706913.                         bioink toolkit for mimicking native tissue biochemical and
               https://doi.org/10.1002/adma.201706913             mechanical properties in bioprinted tissue constructs. Acta
                                                                  Biomater, 25:24–34.
            28.  Zheng Z, Eglin D, Alini M, et al., 2021, Visible light-induced
               3D bioprinting technologies and corresponding bioink   https://doi.org/10.1016/j.actbio.2015.07.030
               materials for  tissue  engineering:  A review. Engineering,   38.  Visscher DO, Lee H, van Zuijlen PPM, et al., 2021, A photo-
               7(7):966–978.                                      crosslinkable cartilage-derived extracellular matrix bioink
               https://doi.org/10.1016/j.eng.2020.05.021          for auricular cartilage tissue engineering. Acta Biomater,
                                                                  121:193–203.
            29.  Tabriz AG, Hermida MA, Leslie NR, et al., 2015, Three-
               dimensional bioprinting of complex cell laden alginate   https://doi.org/10.1016/j.actbio.2020.11.029
               hydrogel structures. Biofabrication, 7(4):045012.  39.  Gao G, Lee JH, Jang J, et al., 2017, Tissue engineered bio-
               https://doi.org/10.1088/1758-5090/7/4/045012       blood-vessels constructed using a tissue-specific bioink
                                                                  and 3D coaxial cell printing technique: A novel therapy for
            30.  Flores-Torres S, Peza-Chavez O, Kuasne H, et al., 2021,   ischemic disease. Adv Funct Mater, 27(33):1700798.
               Alginate-gelatin-Matrigel hydrogels enable the development
               and multigenerational passaging of patient-derived   https://doi.org/10.1002/adfm.201700798
               3D bioprinted cancer spheroid models. Biofabrication,   40.  Campos DFD, Blaeser A, Korsten A, et al., 2015, The stiffness
               13(2):025001.
                                                                  and structure of three-dimensional printed hydrogels direct
               https://doi.org/10.1088/1758-5090/abdb87           the differentiation of mesenchymal stromal cells toward


            Volume 9 Issue 2 (2023)                         19                      https://doi.org/10.18063/ijb.v9i2.649
   22   23   24   25   26   27   28   29   30   31   32