Page 32 - IJB-9-2
P. 32

International Journal of Bioprinting                                      Extrusion-based biomaterial inks



            125. Hu C, Hahn L, Yang M, et al., 2021, Improving printability   136. Cubo N, Garcia M, CaÃizo JFD, et al., 2017, 3D bioprinting
               of a thermoresponsive hydrogel biomaterial ink by nanoclay   of functional human skin: Production and in vivo analysis.
               addition. J Mater Sci, 56(1):691–705.              Biofabrication, 9(11):2843–2854.
               https://doi.org/10.1007/s10853-020-05190-5         https://doi.org/10.1088/1758-5090/9/1/015006
            126. Cidonio 1 G, Glinka M, Kim Y-H, et al., 2020, Nanoclay-  137. Ouyang L, Yao R, Chen X, et al., 2015, 3D printing of HEK
               based  3D  printed  scaffolds  promote  vascular  ingrowth  ex   293FT cell-laden hydrogel into macroporous constructs
               vivo and generate bone mineral tissue in vitro and in vivo.   with high cell viability and normal biological functions.
               Biofabrication, 12(3):035010.                      Biofabrication, 7(1): 015010.

               https://doi.org/10.1088/1758-5090/ab8753           https://doi.org/10.1088/1758-5090/7/1/015010
            127. Zhu W, Cui H, Boualam B, et al., 2018, 3D bioprinting   138. Testa S, Mozetic P, Barbetta A,  et  al., 2017, Microfluidic-
               mesenchymal stem cell-laden construct with core-shell   enhanced 3D bioprinting of aligned myoblast-laden
               nanospheres for cartilage tissue engineering. Nanotechnology,   hydrogels leads to functionally organized myofibers in vitro
               29(18): 185101.                                    and in vivo. Biomaterials, 131:98–110.
               https://doi.org/10.1088/1361-6528/aaafa1           https://doi.org/10.1016/j.biomaterials.2017.03.026
            128. Swaminathan S, Hamid Q, Sun W, et al., 2019, Bioprinting   139. Pescosolido L, Schuurman W, Malda J, et al., 2011, Hyaluronic
               of 3D breast epithelial spheroids for human cancer models.   acid and dextran-based semi-IPN hydrogels as biomaterials
               Biofabrication, 11(2):025003.                      for bioprinting. Biomacromolecules, 12(5):1831–1838.
                                                                  https://doi.org/10.1021/bm200178w
               https://doi.org/10.1088/1758-5090/aafc49
                                                               140. Park JY, Choi J-C, Shim J-H, et al., 2014, A comparative
            129. Carrow JK, Kerativitayanan P, Jaiswal MK, et  al., 2015,   study on collagen type I and hyaluronic acid dependent cell
               Polymers for bioprinting, in Essentials of 3D Biofabrication   behavior for osteochondral tissue bioprinting. Biofabrication,
               and Translation, Atala A and Yoo JJ, Academic Press, Boston,   6(3):035004.
               229–248.
                                                                  https://doi.org/10.1088/1758-5082/6/3/035004
            130. Nijenhuis KT, 1997, Thermoreversible Networks: Viscoelastic
               Properties and Structure of Gels, 1 edn, Springer, Berlin,   141. Ma L, Li Y, Wu Y, et al., 2020, 3D bioprinted hyaluronic
               Heidelberg.                                        acid-based cell-laden scaffold for brain microenvironment
                                                                  simulation. Biodesign Manuf, 3(3):164–174.
            131. Lee VK, Lanzi AM, Ngo H, et al., 2014, Generation of multi-
               scale vascular network system within 3D hydrogel using 3D   https://doi.org/10.1007/s42242-020-00076-6
               bio-printing technology. Cell Mol Bioeng, 7(3):460–472.  142. Wibowo A, Vyas C, Cooper G, et al., 2020, 3D printing of
               https://doi.org/10.1007/s12195-014-0340-0.         polycaprolactone-polyaniline electroactive scaffolds for
                                                                  bone tissue engineering. Materials, 13(3):512.
            132. Zhao L, Lee VK, Yoo S-S, et al., 2012, The integration of
               3-D cell printing and mesoscopic fluorescence molecular   https://doi.org/10.3390/ma13030512
               tomography of  vascular  constructs  within thick  hydrogel   143. Zhao H, Xu J, Zhang E, et al., 2021, 3D bioprinting
               scaffolds. Biomaterials, 33(21):5325–5332.         of polythiophene materials for promoting stem cell
                                                                  proliferation in a nutritionally deficient environment. ACS
               https://doi.org/10.1016/j.biomaterials.2012.04.004
                                                                  Appl Mater Interfaces, 13(22):25759–25770.
            133. Sun Y, Yu K, Nie J, et al., 2021, Modeling the printability   https://doi.org/10.1021/acsami.1c04967
               of photocuring and strength adjustable hydrogel bioink
               during projection-based 3D bioprinting. Biofabrication,   144. Yuk H, Lu B, Lin S, et al., 2020, 3D printing of conducting
               13(3):035032.                                      polymers. Nat Commun, 11(1):1604.
               https://doi.org/10.1088/1758-5090/aba413           https://doi.org/10.1038/s41467-020-15316-7
            134. Iliyana  P,  Katharina  K,  Thomas  S, et al.,  2018,  Gelatin-  145. Zhu K, Shin SR, van Kempen T,  et  al., 2017, Gold
               methacryloyl (GelMA) hydrogels with defined degree of   nanocomposite bioink for printing 3D cardiac constructs.
               functionalization as a versatile toolkit for 3D cell culture and   Adv Funct Mater, 27(12):1605352.
               extrusion bioprinting. Bioengineering, 5(3):55.    https://doi.org/10.1002/adfm.201605352
               https://doi.org/10.3390/bioengineering5030055   146. Mannoor  MS,  Jiang  Z,  James  T, et al.,  2013,  3D  printed
            135. Lee BH, Lum N, Seow LY, et al., 2016, Synthesis and   bionic ears. Nano Lett, 13(6):2634–2639.
               characterization of types A and B gelatin methacryloyl for   https://doi.org/10.1021/nl4007744
               bioink applications. Materials, 9(10):797.
                                                               147. Mehrotra  S,  Singh  RD,  Bandyopadhyay  A, et al.,  2021,
               https://doi.org/10.3390/ma9100797                  Engineering microsphere-loaded non-mulberry silk-based


            Volume 9 Issue 2 (2023)                         24                      https://doi.org/10.18063/ijb.v9i2.649
   27   28   29   30   31   32   33   34   35   36   37