Page 30 - IJB-9-2
P. 30

International Journal of Bioprinting                                      Extrusion-based biomaterial inks



            84.  Zehnder T, Sarker B, Boccaccini AR, et al., 2015, Evaluation   94.  Liu W, Heinrich MA, Zhou Y, et al., 2017, Extrusion
               of an alginate–gelatine crosslinked hydrogel for bioplotting.   bioprinting of shear‐thinning gelatin methacryloyl bioinks.
               Biofabrication, 7(2):025001.                       Adv Healthc Mater, 6(12):1601451.
               https://doi.org/10.1088/1758-5090/7/2/025001       https://doi.org/10.1002/adhm.201601451
            85.  Song  K,  Compaan  AM,  Chai  W,  et  al.,  2020,  Injectable   95.  Wu Y, Wenger A, Golzar H, et al., 2020, 3D bioprinting of
               gelatin microgel-based composite ink for 3D bioprinting in   bicellular liver lobule-mimetic structures via microextrusion
               air. ACS Appl Mater Interfaces, 12(20):22453–22466.  of cellulose nanocrystal-incorporated shear-thinning
                                                                  bioink. Sci Rep UK, 10(1):20648.
               https://doi.org/10.1021/acsami.0c01497
                                                                  https://doi.org/10.1038/s41598-020-77146-3
            86.  Leucht A, Volz A-C, Rogal J, et al., 2020, Advanced
               gelatin-based vascularization bioinks for extrusion-based   96.  Li H, Tan YJ, Leong KF, et al., 2017, 3D bioprinting of
               bioprinting of vascularized bone equivalents. Sci Rep UK,   highly thixotropic alginate/methylcellulose hydrogel with
               10(1):5330.                                        strong interface bonding.  ACS Appl  Mater &  Interfaces,
                                                                  9(23):20086–20097.
               https://doi.org/10.1038/s41598-020-62166-w
                                                                  https://doi.org/10.1021/acsami.7b04216
            87.  Kolan KCR, Semon JA, Bromet B, et al., 2019, Bioprinting
               with human stem cell-laden alginate-gelatin bioink and   97.  Frost BA, Sutliff BP, Thayer P, et al., 2019, Gradient
               bioactive glass for tissue engineering. Int J Bioprint,   poly(ethylene glycol) diacrylate and cellulose nanocrystals
               5(2.2):204.                                        tissue engineering composite scaffolds via extrusion
                                                                  bioprinting. Front Bioeng Biotech, 7:280.
               https://doi.org/10.18063/ijb.v5i2.2.204
                                                                  https://doi.org/10.3389/fbioe.2019.00280
            88.  Yin J, Yan M, Wang Y, et al., 2020, In vitro and in vivo
               biocompatibility evaluation of a 3D bioprinted gelatin-  98.  Li Z, Ramos A, Li M-C, et al., 2020, Improvement of cell
               sodium alginate/rat Schwann-cell scaffold. Mater Sci Eng C   deposition by self-absorbent capability of freeze-dried
               Mater, 109:110530.                                 3D-bioprinted scaffolds derived from cellulose material-
                                                                  alginate hydrogels. Biomed Phys Eng Express, 6(4):
               https://doi.org/10.1016/j.msec.2019.110530
                                                                  045009.
            89.  Yin J, Yan ML, Wang YC, et al., 2018, 3D bioprinting of   https://doi.org/10.1088/2057-1976/ab8fc6
               low-concentration cell-laden gelatin methacrylate (GelMA)
               bioinks with a two-step cross-linking strategy. ACS Appl   99.  Ji S, Abaci A, Morrison T, et al., 2020, Novel bioinks from
               Mater Interfaces, 10(8):6849–6857.                 UV-responsive norbornene-functionalized carboxymethyl
                                                                  cellulose macromers. Bioprinting, 18:e00083.
               https://doi.org/10.1021/acsami.7b16059
                                                                  https://doi.org/10.1016/j.bprint.2020.e00083
            90.  Rastin H, Ormsby RT, Atkins GJ, et al., 2020, 3D bioprinting
               of  methylcellulose/gelatin-methacryloyl  (MC/GelMA)  100. Wu Y, Heikal L, Ferns G, et al., 2019, 3D bioprinting of novel
               bioink with high shape integrity. ACS Appl Biomater,   biocompatible scaffolds for endothelial cell repair. Polymers
               3(3):1815–1826.                                    Basel, 11(12):1924.
               https://doi.org/10.1021/acsabm.0c00169             https://doi.org/10.3390/polym11121924
            91.  Erdem A, Darabi MA, Nasiri R, et al., 2020, 3D bioprinting   101. Xin S, Chimene D, Garza JE, et al., 2019, Clickable PEG
               of oxygenated cell‐laden gelatin methacryloyl constructs.   hydrogel microspheres as building blocks for 3D bioprinting.
               Adv Healthc Mater, 9(15):1901794.                  Biomater Sci, 7(3):1179–1187.
               https://doi.org/10.1002/adhm.201901794             https://doi.org/10.1039/C8BM01286E
            92.  Colle J, Blondeel P, De Bruyne A, et al., 2020, Bioprinting   102. Hong S, Kim JS, Jung B, et al., 2019, Coaxial bioprinting
               predifferentiated adipose-derived mesenchymal stem cell   of cell-laden vascular constructs using a gelatin–tyramine
               spheroids with methacrylated gelatin ink for adipose tissue   bioink. Biomater Sci, 7(11):4578–4587.
               engineering. J Mater Sci Mater M, 31(4):36.
                                                                  https://doi.org/10.1039/C8BM00618K
               https://doi.org/10.1007/s10856-020-06374-w
                                                               103. Sun X, Ma Z, Zhao X, et al., 2021, Three-dimensional
            93.  Ning L, Mehta R, Cao C, et al., 2020, Embedded 3D   bioprinting  of  multicell-laden  scaffolds  containing  bone
               bioprinting of gelatin methacryloyl-based constructs with   morphogenic protein-4 for promoting M2 macrophage
               highly tunable structural fidelity. ACS Appl Mater Interfaces,   polarization and accelerating bone defect repair in diabetes
               12(40):44563–44577.                                mellitus. Bioactive Mater, 6(3):757–769.
               https://doi.org/10.1021/acsami.0c15078             https://doi.org/10.1016/j.bioactmat.2020.08.030


            Volume 9 Issue 2 (2023)                         22                      https://doi.org/10.18063/ijb.v9i2.649
   25   26   27   28   29   30   31   32   33   34   35