Page 30 - IJB-9-2
P. 30
International Journal of Bioprinting Extrusion-based biomaterial inks
84. Zehnder T, Sarker B, Boccaccini AR, et al., 2015, Evaluation 94. Liu W, Heinrich MA, Zhou Y, et al., 2017, Extrusion
of an alginate–gelatine crosslinked hydrogel for bioplotting. bioprinting of shear‐thinning gelatin methacryloyl bioinks.
Biofabrication, 7(2):025001. Adv Healthc Mater, 6(12):1601451.
https://doi.org/10.1088/1758-5090/7/2/025001 https://doi.org/10.1002/adhm.201601451
85. Song K, Compaan AM, Chai W, et al., 2020, Injectable 95. Wu Y, Wenger A, Golzar H, et al., 2020, 3D bioprinting of
gelatin microgel-based composite ink for 3D bioprinting in bicellular liver lobule-mimetic structures via microextrusion
air. ACS Appl Mater Interfaces, 12(20):22453–22466. of cellulose nanocrystal-incorporated shear-thinning
bioink. Sci Rep UK, 10(1):20648.
https://doi.org/10.1021/acsami.0c01497
https://doi.org/10.1038/s41598-020-77146-3
86. Leucht A, Volz A-C, Rogal J, et al., 2020, Advanced
gelatin-based vascularization bioinks for extrusion-based 96. Li H, Tan YJ, Leong KF, et al., 2017, 3D bioprinting of
bioprinting of vascularized bone equivalents. Sci Rep UK, highly thixotropic alginate/methylcellulose hydrogel with
10(1):5330. strong interface bonding. ACS Appl Mater & Interfaces,
9(23):20086–20097.
https://doi.org/10.1038/s41598-020-62166-w
https://doi.org/10.1021/acsami.7b04216
87. Kolan KCR, Semon JA, Bromet B, et al., 2019, Bioprinting
with human stem cell-laden alginate-gelatin bioink and 97. Frost BA, Sutliff BP, Thayer P, et al., 2019, Gradient
bioactive glass for tissue engineering. Int J Bioprint, poly(ethylene glycol) diacrylate and cellulose nanocrystals
5(2.2):204. tissue engineering composite scaffolds via extrusion
bioprinting. Front Bioeng Biotech, 7:280.
https://doi.org/10.18063/ijb.v5i2.2.204
https://doi.org/10.3389/fbioe.2019.00280
88. Yin J, Yan M, Wang Y, et al., 2020, In vitro and in vivo
biocompatibility evaluation of a 3D bioprinted gelatin- 98. Li Z, Ramos A, Li M-C, et al., 2020, Improvement of cell
sodium alginate/rat Schwann-cell scaffold. Mater Sci Eng C deposition by self-absorbent capability of freeze-dried
Mater, 109:110530. 3D-bioprinted scaffolds derived from cellulose material-
alginate hydrogels. Biomed Phys Eng Express, 6(4):
https://doi.org/10.1016/j.msec.2019.110530
045009.
89. Yin J, Yan ML, Wang YC, et al., 2018, 3D bioprinting of https://doi.org/10.1088/2057-1976/ab8fc6
low-concentration cell-laden gelatin methacrylate (GelMA)
bioinks with a two-step cross-linking strategy. ACS Appl 99. Ji S, Abaci A, Morrison T, et al., 2020, Novel bioinks from
Mater Interfaces, 10(8):6849–6857. UV-responsive norbornene-functionalized carboxymethyl
cellulose macromers. Bioprinting, 18:e00083.
https://doi.org/10.1021/acsami.7b16059
https://doi.org/10.1016/j.bprint.2020.e00083
90. Rastin H, Ormsby RT, Atkins GJ, et al., 2020, 3D bioprinting
of methylcellulose/gelatin-methacryloyl (MC/GelMA) 100. Wu Y, Heikal L, Ferns G, et al., 2019, 3D bioprinting of novel
bioink with high shape integrity. ACS Appl Biomater, biocompatible scaffolds for endothelial cell repair. Polymers
3(3):1815–1826. Basel, 11(12):1924.
https://doi.org/10.1021/acsabm.0c00169 https://doi.org/10.3390/polym11121924
91. Erdem A, Darabi MA, Nasiri R, et al., 2020, 3D bioprinting 101. Xin S, Chimene D, Garza JE, et al., 2019, Clickable PEG
of oxygenated cell‐laden gelatin methacryloyl constructs. hydrogel microspheres as building blocks for 3D bioprinting.
Adv Healthc Mater, 9(15):1901794. Biomater Sci, 7(3):1179–1187.
https://doi.org/10.1002/adhm.201901794 https://doi.org/10.1039/C8BM01286E
92. Colle J, Blondeel P, De Bruyne A, et al., 2020, Bioprinting 102. Hong S, Kim JS, Jung B, et al., 2019, Coaxial bioprinting
predifferentiated adipose-derived mesenchymal stem cell of cell-laden vascular constructs using a gelatin–tyramine
spheroids with methacrylated gelatin ink for adipose tissue bioink. Biomater Sci, 7(11):4578–4587.
engineering. J Mater Sci Mater M, 31(4):36.
https://doi.org/10.1039/C8BM00618K
https://doi.org/10.1007/s10856-020-06374-w
103. Sun X, Ma Z, Zhao X, et al., 2021, Three-dimensional
93. Ning L, Mehta R, Cao C, et al., 2020, Embedded 3D bioprinting of multicell-laden scaffolds containing bone
bioprinting of gelatin methacryloyl-based constructs with morphogenic protein-4 for promoting M2 macrophage
highly tunable structural fidelity. ACS Appl Mater Interfaces, polarization and accelerating bone defect repair in diabetes
12(40):44563–44577. mellitus. Bioactive Mater, 6(3):757–769.
https://doi.org/10.1021/acsami.0c15078 https://doi.org/10.1016/j.bioactmat.2020.08.030
Volume 9 Issue 2 (2023) 22 https://doi.org/10.18063/ijb.v9i2.649

