Page 28 - IJB-9-2
P. 28

International Journal of Bioprinting                                      Extrusion-based biomaterial inks



               adipogenic and osteogenic lineages. Tissue Eng A, 21(3-4):   51.  Ooi  HW,  Mota  C,  Ten  Cate  AT, et al.,  2018,  Thiol-ene
               740–756.                                           alginate hydrogels as versatile bioinks for bioprinting.
                                                                  Biomacromolecules, 19(8):3390–3400.
               https://doi.org/10.1089/ten.tea.2014.0231
            41.  Moncal KK, Ozbolat V, Datta P, et al., 2019, Thermally-  https://doi.org/10.1021/acs.biomac.8b00696
               controlled extrusion-based bioprinting of collagen. J Mater   52.  Markstedt K, Mantas A, Tournier I, et al., 2015, 3D
               Sci Mater M, 30(5):55.                             bioprinting human chondrocytes with nanocellulose-
               https://doi.org/10.1007/s10856-019-6258-2          alginate bioink for cartilage tissue engineering applications.
                                                                  Biomacromolecules, 16(5):1489–1496.
            42.  Skardal A, Mack D, Kapetanovic E, et al., 2012, Bioprinted
               amniotic fluid-derived stem cells accelerate healing of large   https://doi.org/10.1021/acs.biomac.5b00188
               skin wounds. Stem Cell Transl Med, 1(11):792–802.  53.  Khalil S, Sun W, 2009, Bioprinting endothelial cells with
               https://doi.org/10.5966/sctm.2012-0088             alginate for 3D tissue constructs. J Biomech Eng-T Asme,
                                                                  131(11):111002.
            43.  Smith  CM,  Stone  AL,  Parkhill RL, et al.,  2004, Three-
               dimensional bioassembly tool for generating viable tissue-  https://doi.org/10.1115/1.3128729
               engineered constructs. Tissue Eng, 10(9-10):1566–1576.  54.  Hafezi F, Shorter S, Tabriz AG, et al., 2020, Bioprinting and
               https://doi.org/10.1089/ten.2004.10.1566           preliminary testing of highly reproducible novel bioink for
                                                                  potential skin regeneration. Pharmaceutics, 12(6):550.
            44.  Poldervaart MT, Goversen B, De Ruijter M, et al.,
               2017, 3D bioprinting of methacrylated hyaluronic acid   https://doi.org/10.3390/pharmaceutics12060550
               (MeHA) hydrogel with intrinsic osteogenicity.  PLoS  One,   55.  Maturavongsadit P, Narayanan LK, Chansoria P, et al., 2021,
               12(6):e0177628.                                    Cell-laden nanocellulose/chitosan-based bioinks for 3D
               https://doi.org/10.1371/journal.pone.0177628       bioprinting and enhanced osteogenic cell differentiation.
                                                                  ACS Appl Bio Mater, 4(3):2342–2353.
            45.  Antich C, de Vicente J, Jiménez G, et al., 2020, Bio-inspired
               hydrogel composed of hyaluronic acid and alginate as a   https://doi.org/10.1021/acsabm.0c01108
               potential bioink for 3D bioprinting of articular cartilage   56.  Ku J, Seonwoo H, Park S, et al., 2020, Cell-laden
               engineering constructs. Acta Biomater, 106:114–123.
                                                                  thermosensitive chitosan hydrogel bioinks for 3D bioprinting
               https://doi.org/10.1016/j.actbio.2020.01.046       applications. Appl Sci Basel, 10(7):2455.
            46.  Jorgensen AM, Varkey M, Gorkun A, et al., 2020, Bioprinted   https://doi.org/10.3390/app10072455
               skin recapitulates normal collagen remodeling in full-
               thickness wounds. Tissue Eng A, 26(9-10):512–526.  57.  Ng WL, Yeong WY, Naing MW, 2016, Polyelectrolyte
                                                                  gelatin-chitosan hydrogel optimized for 3D bioprinting in
               https://doi.org/10.1089/ten.TEA.2019.0319          skin tissue engineering. Int J Bioprint, 2(1):53–62.
            47.  Law N, Doney B, Glover H, et al., 2018, Characterisation   https://doi.org/10.18063/IJB.2016.01.009
               of hyaluronic acid methylcellulose hydrogels for 3D
               bioprinting. J Mech Behav Biomed, 77:389–399.   58.  Liu Q, Li Q, Xu S, et al., 2018, Preparation and properties of
                                                                  3D printed alginate-chitosan polyion complex hydrogels for
               https://doi.org/10.1016/j.jmbbm.2017.09.031        tissue engineering. Polymers Basel, 10(6):664.
            48.  Kiyotake EA, Douglas AW, Thomas EE, et al., 2019,   https://doi.org/10.3390/polym10060664
               Development and quantitative characterization of the
               precursor rheology of hyaluronic acid hydrogels for   59.  Wu Q, Therriault D, Heuzey M-C, 2018, Processing and
               bioprinting. Acta Biomater, 95:176–187.            properties of chitosan inks for 3D printing of hydrogel
                                                                  microstructures. ACS Biomater Sci Eng, 4(7):2643–2652.
               https://doi.org/10.1016/j.actbio.2019.01.041
                                                                  https://doi.org/10.1021/acsbiomaterials.8b00415
            49.  Raddatz L, Lavrentieva A, Pepelanova I, et al., 2018,
               Development and application of an additively manufactured   60.  Bergonzi C, Di Natale A, Zimetti F, et al., 2019, Study of
               calcium chloride Nebulizer for alginate 3D-bioprinting   3D-printed chitosan scaffold features after different post-
               purposes. J Funct Biomat, 9(4):63.                 printing gelation processes. Sci Rep UK, 9(1):362.
               https://doi.org/10.3390/jfb9040063                 https://doi.org/10.1038/s41598-018-36613-8
            50.  Kim MH, Lee YW, Jung W-K, et al., 2019, Enhanced   61.  Sharma R, Smits IPM, De La Vega L, et al., 2020, 3D
               rheological behaviors of alginate hydrogels with carrageenan   bioprinting pluripotent stem cell derived neural tissues
               for extrusion-based bioprinting. J Mech Behav Biomed,   using a novel fibrin bioink containing drug releasing
               98:187–194.                                        microspheres. Front Bioeng Biotech, 8:57.
               https://doi.org/10.1016/j.jmbbm.2019.06.014        https://doi.org/10.3389/fbioe.2020.00057


            Volume 9 Issue 2 (2023)                         20                      https://doi.org/10.18063/ijb.v9i2.649
   23   24   25   26   27   28   29   30   31   32   33