Page 28 - IJB-9-2
P. 28
International Journal of Bioprinting Extrusion-based biomaterial inks
adipogenic and osteogenic lineages. Tissue Eng A, 21(3-4): 51. Ooi HW, Mota C, Ten Cate AT, et al., 2018, Thiol-ene
740–756. alginate hydrogels as versatile bioinks for bioprinting.
Biomacromolecules, 19(8):3390–3400.
https://doi.org/10.1089/ten.tea.2014.0231
41. Moncal KK, Ozbolat V, Datta P, et al., 2019, Thermally- https://doi.org/10.1021/acs.biomac.8b00696
controlled extrusion-based bioprinting of collagen. J Mater 52. Markstedt K, Mantas A, Tournier I, et al., 2015, 3D
Sci Mater M, 30(5):55. bioprinting human chondrocytes with nanocellulose-
https://doi.org/10.1007/s10856-019-6258-2 alginate bioink for cartilage tissue engineering applications.
Biomacromolecules, 16(5):1489–1496.
42. Skardal A, Mack D, Kapetanovic E, et al., 2012, Bioprinted
amniotic fluid-derived stem cells accelerate healing of large https://doi.org/10.1021/acs.biomac.5b00188
skin wounds. Stem Cell Transl Med, 1(11):792–802. 53. Khalil S, Sun W, 2009, Bioprinting endothelial cells with
https://doi.org/10.5966/sctm.2012-0088 alginate for 3D tissue constructs. J Biomech Eng-T Asme,
131(11):111002.
43. Smith CM, Stone AL, Parkhill RL, et al., 2004, Three-
dimensional bioassembly tool for generating viable tissue- https://doi.org/10.1115/1.3128729
engineered constructs. Tissue Eng, 10(9-10):1566–1576. 54. Hafezi F, Shorter S, Tabriz AG, et al., 2020, Bioprinting and
https://doi.org/10.1089/ten.2004.10.1566 preliminary testing of highly reproducible novel bioink for
potential skin regeneration. Pharmaceutics, 12(6):550.
44. Poldervaart MT, Goversen B, De Ruijter M, et al.,
2017, 3D bioprinting of methacrylated hyaluronic acid https://doi.org/10.3390/pharmaceutics12060550
(MeHA) hydrogel with intrinsic osteogenicity. PLoS One, 55. Maturavongsadit P, Narayanan LK, Chansoria P, et al., 2021,
12(6):e0177628. Cell-laden nanocellulose/chitosan-based bioinks for 3D
https://doi.org/10.1371/journal.pone.0177628 bioprinting and enhanced osteogenic cell differentiation.
ACS Appl Bio Mater, 4(3):2342–2353.
45. Antich C, de Vicente J, Jiménez G, et al., 2020, Bio-inspired
hydrogel composed of hyaluronic acid and alginate as a https://doi.org/10.1021/acsabm.0c01108
potential bioink for 3D bioprinting of articular cartilage 56. Ku J, Seonwoo H, Park S, et al., 2020, Cell-laden
engineering constructs. Acta Biomater, 106:114–123.
thermosensitive chitosan hydrogel bioinks for 3D bioprinting
https://doi.org/10.1016/j.actbio.2020.01.046 applications. Appl Sci Basel, 10(7):2455.
46. Jorgensen AM, Varkey M, Gorkun A, et al., 2020, Bioprinted https://doi.org/10.3390/app10072455
skin recapitulates normal collagen remodeling in full-
thickness wounds. Tissue Eng A, 26(9-10):512–526. 57. Ng WL, Yeong WY, Naing MW, 2016, Polyelectrolyte
gelatin-chitosan hydrogel optimized for 3D bioprinting in
https://doi.org/10.1089/ten.TEA.2019.0319 skin tissue engineering. Int J Bioprint, 2(1):53–62.
47. Law N, Doney B, Glover H, et al., 2018, Characterisation https://doi.org/10.18063/IJB.2016.01.009
of hyaluronic acid methylcellulose hydrogels for 3D
bioprinting. J Mech Behav Biomed, 77:389–399. 58. Liu Q, Li Q, Xu S, et al., 2018, Preparation and properties of
3D printed alginate-chitosan polyion complex hydrogels for
https://doi.org/10.1016/j.jmbbm.2017.09.031 tissue engineering. Polymers Basel, 10(6):664.
48. Kiyotake EA, Douglas AW, Thomas EE, et al., 2019, https://doi.org/10.3390/polym10060664
Development and quantitative characterization of the
precursor rheology of hyaluronic acid hydrogels for 59. Wu Q, Therriault D, Heuzey M-C, 2018, Processing and
bioprinting. Acta Biomater, 95:176–187. properties of chitosan inks for 3D printing of hydrogel
microstructures. ACS Biomater Sci Eng, 4(7):2643–2652.
https://doi.org/10.1016/j.actbio.2019.01.041
https://doi.org/10.1021/acsbiomaterials.8b00415
49. Raddatz L, Lavrentieva A, Pepelanova I, et al., 2018,
Development and application of an additively manufactured 60. Bergonzi C, Di Natale A, Zimetti F, et al., 2019, Study of
calcium chloride Nebulizer for alginate 3D-bioprinting 3D-printed chitosan scaffold features after different post-
purposes. J Funct Biomat, 9(4):63. printing gelation processes. Sci Rep UK, 9(1):362.
https://doi.org/10.3390/jfb9040063 https://doi.org/10.1038/s41598-018-36613-8
50. Kim MH, Lee YW, Jung W-K, et al., 2019, Enhanced 61. Sharma R, Smits IPM, De La Vega L, et al., 2020, 3D
rheological behaviors of alginate hydrogels with carrageenan bioprinting pluripotent stem cell derived neural tissues
for extrusion-based bioprinting. J Mech Behav Biomed, using a novel fibrin bioink containing drug releasing
98:187–194. microspheres. Front Bioeng Biotech, 8:57.
https://doi.org/10.1016/j.jmbbm.2019.06.014 https://doi.org/10.3389/fbioe.2020.00057
Volume 9 Issue 2 (2023) 20 https://doi.org/10.18063/ijb.v9i2.649

