Page 33 - IJB-9-2
P. 33

International Journal of Bioprinting                                      Extrusion-based biomaterial inks



               3D bioprinted vascularized cardiac patches with oxygen-  158. Veronese FM, Pasut G, 2005, PEGylation, successful
               releasing and immunomodulatory potential. ACS Appl   approach to drug delivery. Drug Discov Today, 10(21):1451–
               Mater Interfaces, 13(43):50744–50759.              1458.
               https://doi.org/10.1021/acsami.1c14118             https://doi.org/10.1016/s1359-6446(05)03575-0
            148. Asulin  M,  Michael  I,  Shapira  A, et al.,  2021,  One-step   159. Floody MC, Theng BKG, Reyes P, et al., 2009, Natural
               3D printing of heart patches with built-in electronics for   nanoclays: Applications and future trends—A Chilean
               performance regulation. Adv Sci, 8(9):2004205.     perspective. Clay Miner, 44(2):161–176.
               https://doi.org/10.1002/advs.202004205             https://doi.org/10.1180/claymin.2009.044.2.161
            149. Tian K, Bae J, Bakarich SE, et al., 2017, 3D printing of   160. Xavier JR, Thakur T, Desai P, et al., 2015, Bioactive
               transparent and  conductive  heterogeneous  hydrogel-  nanoengineered hydrogels for bone tissue engineering: A
               elastomer systems. Adv Mater, 29(10):1604827.      growth-factor-free approach. ACS Nano, 9(3):3109–3118.
               https://doi.org/10.1002/adma.201604827             https://doi.org/10.1021/nn507488s
            150. Jia J, Richards DJ, Pollard S, et al., 2014, Engineering alginate   161. Gladman  AS, Matsumoto  EA, Nuzzo  RG, et al.,  2016,
               as bioink for bioprinting. Acta Biomater, 10(10):4323–4331.  Biomimetic 4D printing. Nat Mater, 15(4):413–418.
               https://doi.org/10.1016/j.actbio.2014.06.034       https://doi.org/10.1038/nmat4544
            151. Kang D, Hong G, An S, et al., 2020, Bioprinting of   162. Liu J, Erol O, Pantula A, et al., 2019, Dual-gel 4D printing
               multiscaled hepatic lobules within a highly vascularized   of bioinspired tubes. ACS Appl Mater Interfaces, 11(8):8492–
               construct. Small, 16(13):1905505.                  8498.
                                                                  https://doi.org/10.1021/acsami.8b17218
               https://doi.org/10.1002/smll.201905505
                                                               163. Ahlfeld T, Cidonio G, Kilian D, et al., 2017, Development
            152. Yegappan R, Selvaprithiviraj V, Amirthalingam S,  et  al.,
               2018, Carrageenan based hydrogels for drug delivery, tissue   of a clay based bioink for 3D cell printing for skeletal
               engineering  and wound  healing. Carbohydr Polym,  198:   application. Biofabrication, 9(3):034103.
               385–400.                                           https://doi.org/10.1088/1758-5090/aa7e96
               https://doi.org/10.1016/j.carbpol.2018.06.086   164. Mulakkal MC, Trask RS, Ting VP, et al., 2018, Responsive
                                                                  cellulose-hydrogel  composite  ink  for  4D  printing. Mater
            153. Nadernezhad A, Caliskan OS, Topuz F, et al., 2019,   Design, 160:108–118.
               Nanocomposite bioinks based on agarose and 2D
               nanosilicates with tunable flow properties and bioactivity   https://doi.org/10.1016/j.matdes.2018.09.009
               for 3D bioprinting. ACS Appl Biomater, 2(2):796–806.  165. Zhang X, Zhou Y, Liu Y, et al., 2021, Effect of water soluble
               https://doi.org/10.1021/acsabm.8b00665             polymer on the dispersion stability of cellulose nanofibers in
                                                                  water. J Cell Sci Technol, 28(1):26–33.
            154. Bertassoni LE, Cecconi M, Manoharan V,  et  al., 2014,
               Hydrogel  bioprinted  microchannel  networks  for  https://doi.org/10.16561/j.cnki.xws.2020.01.07
               vascularization of tissue engineering constructs. Lab Chip,   166. Lille M, Nurmela A, Nordlund E, et al., 2018, Applicability
               14(13):2202–2211.                                  of protein and fiber-rich food materials in extrusion-based
               https://doi.org/10.1039/c4lc00030g                 3D printing. J Food Eng, 220:20–27.
            155. Mirdamadi E, Muselimyan N, Koti P, et al., 2019, Agarose   https://doi.org/10.1016/j.jfoodeng.2017.04.034
               slurry as a support medium for bioprinting and culturing   167. Wu Y, Lin ZYW, Wenger AC, et al., 2018, 3D bioprinting of
               freestanding cell-laden hydrogel constructs. 3D Print Addit   liver-mimetic construct with alginate/cellulose nanocrystal
               Manuf, 6(3):158–164.                               hybrid bioink. Bioprinting, 9:1-6.

               https://doi.org/10.1089/3dp.2018.0175              https://doi.org/10.1016/j.bprint.2017.12.001
            156. Fedorovich NE, Swennen I, Girones J, et al., 2009, Evaluation   168. Giachini P, Gupta SS, Wang W, et al., 2020, Additive
               of photocrosslinked lutrol hydrogel for tissue printing   manufacturing of cellulose-based materials with continuous,
               applications. Biomacromolecules, 10(7):1689–1696.  multidirectional stiffness gradients. Sci Adv, 6(8):eaay0929.
               https://doi.org/10.1021/bm801463q                  https://doi.org/10.1126/sciadv.aay0929
            157. Lewis PL, Yan M, Su J, et al., 2019, Directing the growth and   169. Gospodinova A, Nankov V, Tomov S, et al., 2021, Extrusion
               alignment of biliary epithelium within extracellular matrix   bioprinting of hydroxyethylcellulose-based bioink for
               hydrogels. Acta Biomater, 85:84–93.                cervical tumor model. Carbohydr Polym, 260:117793.
               https://doi.org/10.1016/j.actbio.2018.12.039       https://doi.org/10.1016/j.carbpol.2021.117793


            Volume 9 Issue 2 (2023)                         25                      https://doi.org/10.18063/ijb.v9i2.649
   28   29   30   31   32   33   34   35   36   37   38