Page 298 - IJB-9-2
P. 298

International Journal of Bioprinting                                    Methodology of hydrogel printability



            9.   Fatimi A, Okoro OV, Podstawczyk D, et al., 2022, Natural   20.  Omrani MM , Kumar H, Mohamed MGA,  et al., 2020,
               hydrogel-based bio-inks for 3D bioprinting in tissue   Polyether ether ketone surface modification with plasma
               engineering: A review. Gels, 8(3):179.             and gelatin for enhancing cell attachment. J Biomed Mater
                                                                  Res B Appl Biomater, 109(5):622–629.
               https://doi.org/10.3390/GELS8030179
                                                                  https://doi.org/10.1002/JBM.B.34726
            10.  Bai X, Gao M, Syed S, et al., 2018, Bioactive hydrogels for
               bone regeneration. Bioact Mater, 3(4):401–417.  21.  Morello MC, 2019, Estudio del composite hidroxiapatita–
               https://doi.org/10.1016/J.BIOACTMAT.2018.05.006    acrílico  como  material  de  bioimpresión  3D  [Study of the
                                                                  Hydroxyapatite-Acrylic Composite as a 3D Bioprinting
            11.  Cheng Y, Shi X, Jiang X, et al., 2020, Printability of a cellulose   Material]. Universidad Nacional de Córdoba, Córdoba.
               derivative for extrusion-based 3D printing: The application   [Article in Spanish]
               on a biodegradable support material. Front Mater, 7:86.
                                                               22.  Gillispie GJ, Han A, Uzun-Per M, et al., 2020, The influence
               https://doi.org/10.3389/FMATS.2020.00086/BIBTEX    of printing parameters and cell density on bioink printing
            12.  Guan X , Avci-Adali M, Alarçin E , et al., 2017, Development   outcomes. Tissue Eng Part A, 26(23–24):1349–1358.
               of hydrogels for regenerative engineering. Biotechnol J, 12(5).  https://doi.org/10.1089/TEN.TEA.2020.0210
               https://doi.org/10.1002/BIOT.201600394          23.  He Y, Yang F, Zhao H, et al., 2016, Research on the printability
            13.  Klak M , Kowalska P, Dobrzański T,  et al., 2021, Bionic   of hydrogels in 3D bioprinting. Sci Rep, 6(1):1–13.
               organs: Shear forces reduce pancreatic islet and mammalian   https://doi.org/10.1038/srep29977
               cell viability during the process of 3D bioprinting.
               Micromachines, 12(3):304.                       24.  Ouyang  L, Yao  R,  Zhao Y,  et al.,  2016, Effect of  bioink
                                                                  properties on printability and cell viability for 3D bioplotting
               https://doi.org/10.3390/MI12030304                 of embryonic stem cells. Biofabrication, 8(3).
            14.  Mancha E , Gómez JC, López E, et al., 2020, Hydrogels for   https://doi.org/10.1088/1758-5090/8/3/035020
               bioprinting: A systematic review of hydrogels synthesis,
               bioprinting parameters, and bioprinted structures behavior.   25.  Kyle S, Jessop ZM, Al-Sabah A, et al., 2017, Printability of
               Front Bioeng Biotechnol, 8:776.                    candidate biomaterials for extrusion based 3D printing:
                                                                  State-of-the-art. Adv Healthc Mater, 6(16).
               https://doi.org/10.3389/FBIOE.2020.00776/BIBTEX
                                                                  https://doi.org/10.1002/ADHM.201700264
            15.  Russo E, Qu X, Chwalik-Pilszyk G, et al., 2022, Influence of
               selected ophthalmic fluids on the wettability and hydration   26.  Habib MA, Khoda B, 2018, Development of clay based
               of hydrogel and silicone hydrogel contact lenses—In vitro   novel bio-ink for 3D bio-printing process. Procedia Manuf,
               study. Materials, 15(3):930.                       26:846–856.
               https://doi.org/10.3390/MA15030930                 https://doi.org/10.1016/J.PROMFG.2018.07.105
            16.  González Yeguas L, Estudio de la bioimpresión de hidrogeles   27.  García Villegas C, Vidarte Pastrana MM, 2011, Informe 1.
               aplicados  a la generación de piel artificial mediante   Estado del arte de la bioimpresión 3D [Report 1. State of the
               impresión laser BA-LIFT [Study of the bioprinting of   Art of 3D Bioprinting]. Bogotá. [Article in Spanish]
               hydrogels applied to the generation of artificial skin by BA-  28.  Yang I, Salas F, Pomares G,  et al., 2018, Bioimpresión de
               LIFT laser printing]. Universidad Politécnica de Madrid,   órganos y tejidos en tercera dimensión: técnicas, aplicaciones
               Madrid, 2020. [Article in Spanish]
                                                                  y limitaciones [3D organ and tissue bioprinting: Techniques,
            17.  Castillo HE, Carballo SM, Alfaro ME, et al., 2021, Hidrogeles   applications and limitations]. Rev Tecnol Marcha, 31(3):41–51.
               híbridos  de  quitosano  y polietilenglicol (quit:peg)  para      https://doi.org/10.18845/TM.V31I3.3900. [Article in
               potenciales aplicaciones biomédicas [Hydrogels chitosan   Spanish]
               and polyethylene glycol (quit:peg) hybrids for potential
               applications biomedical sciences].  Rev Iberoam Polim,   29.  César  ÁA,  Olivos  A,  Landa  C,  et al.,  2018,  Use  and
               22(2):97–112. [Article in Spanish]                 application of 3D printing and bioimpression technology in
                                                                  medicine. Rev Facult Med, 61:9.
            18.  Nakagawa M, Teraoka F, Fujimoto S, et al., 2006, Improvement
               of cell adhesion on poly(L-lactide) by atmospheric plasma   30.  Therriault D, White SR, Lewis JA, 2007, Rheological
               treatment. J Biomed Mater Res A, 77(1):112–118.    behavior of fugitive organic inks for direct-write assembly.
                                                                  Appl Rheol, 17:10112-1–10112-8.
               https://doi.org/10.1002/JBM.A.30521
                                                               31.  Billiet T, Gevaert E, de Schryver T,  et  al., 2014, The 3D
            19.  Rodríguez Rego JM, 2021, Estudio de la bioimpresión   printing of gelatin methacrylamide cell-laden tissue-
               3d  con  aplicación  en  odontología  a  partir  de  una  nueva   engineered constructs with high cell viability. Biomaterials,
               metodología [Study of 3D Bioprinting With Application in   35(1):49–62.
               Dentistry  Based on  a New  Methodology]. Universidad de
               Extremadura, Badajoz. [Article in Spanish]         https://doi.org/10.1016/J.BIOMATERIALS.2013.09.078

            Volume 9 Issue 2 (2023)                        290                     https://doi.org/10.18063/ijb.v9i2.667
   293   294   295   296   297   298   299   300   301   302   303