Page 414 - IJB-9-2
P. 414
International Journal of Bioprinting 3D-printed skin substitute accelerates wound healing in vivo
cells enhances wound healing in mouse. Colloids Surf A 19. Guan G, Qizhuang L, Liu S, et al., 2022, 3D-bioprinted
Physicochem Eng Asp, 604: 125268. peptide coupling patches for wound healing. Mater Today
Bio, 13: 100188.
https://doi.org/10.1016/j.colsurfa.2020.125268
11. Chen M, Przyborowski M, Berthiaume F, 2009, Stem cells https://doi.org/10.1016/j.mtbio.2021.100188
for skin tissue engineering and wound healing. Crit Rev 20. Camci-Unal G, Cuttica D, Annabi N, et al., 2013, Synthesis
Biomed Eng, 37: 399–421. and characterization of hybrid hyaluronic acid-gelatin
https://doi.org/10.1615/critrevbiomedeng.v37.i4-5.50 hydrogels. Biomacromolecules, 14: 1085–1092.
12. Choi YC, Choi JS, Woo CH, et al., 2014, Stem cell delivery https://doi.org/10.1021/bm3019856
systems inspired by tissue-specific niches. J Control Release, 21. Mazini L, Rochette L, Admou B, et al., 2020, Hopes and limits
193: 42-50. of adipose-derived stem cells (ADSCs) and mesenchymal
https://doi.org/10.1016/j.jconrel.2014.06.032 stem cells (MSCs) in wound healing. Int J Mol Sci, 21: 1306.
13. Cho KH, Uthaman S, Park IK, et al., 2018, Injectable https://doi.org/10.3390/ijms21041306.
biomaterials in plastic and reconstructive surgery: A review 22. Li CY, Wu XY, Tong JB, et al., 2015, Comparative analysis
of the current status. Tissue Eng Regen Med, 15: 559–574. of human mesenchymal stem cells from bone marrow and
https://doi.org/10.1007/s13770-018-0158-2 adipose tissue under xeno-free conditions for cell therapy.
Stem Cell Res Ther, 6: 55.
14. Zhao Y, Fan J, Bai S, 2019, Biocompatibility of injectable
hydrogel from decellularized human adipose tissue in https://doi.org/10.1186/s13287-015-0066-5
vitro and in vivo. J Biomed Mater Res B Appl Biomater, 23. Hassanshahi A, Hassanshahi M, Khabbazi S, et al., 2019,
107: 1684–1694. Adipose-derived stem cells for wound healing. J Cell Physiol,
https://doi.org/10.1002/jbm.b.34261 234: 7903–7914.
15. Zhu J, Marchant RE, 2011, Design properties of hydrogel https://doi.org/10.1002/jcp.27922
tissue-engineering scaffolds. Expert Rev Med Devices, 24. Boggio P, Tiberio R, Gattoni M, et al., 2008, Is there an
8: 607–626. easier way to autograft skin in chronic leg ulcers? ‘Minced
https://doi.org/10.1586/erd.11.27 micrografts’, a new technique. J Eur Acad Dermatol Venereol,
22: 1168–1172.
16. Murphy SV, Skardal A, Atala A, 2013, Evaluation of
hydrogels for bio-printing applications. J Biomed Mater Res https://doi.org/10.1111/j.1468-3083.2008.02737.x
A, 101: 272–284. 25. Zhang ML, 1987, The use of microskin-grafting in extensive
https://doi.org/10.1002/jbm.a.34326 burns. Zhonghua Zheng Xing Shao Shang Wai Ke Za Zhi,
3: 100–102, 156.
17. Xu P, Guan J, Chen Y, et al., 2021, Stiffness of
photocrosslinkable gelatin hydrogel influences nucleus 26. Mota C, Puppi D, Chiellini F, et al., 2015, Additive
pulposus cell properties in vitro. J Cell Mol Med, 25: 880–891. manufacturing techniques for the production of tissue
engineering constructs. J Tissue Eng Regen Med, 9: 174–190.
https://doi.org/10.1111/jcmm.16141
https://doi.org/10.1002/term.1635
18. Schuurman W, Levett PA, Pot MW, et al., 2013, Gelatin-
methacrylamide hydrogels as potential biomaterials for 27. Siddiqui N, Asawa S, Birru B, et al., 2018, PCL-based
fabrication of tissue-engineered cartilage constructs. composite scaffold matrices for tissue engineering
Macromol Biosci, 13: 551–561. applications. Mol Biotechnol, 60: 506–532.
https://doi.org/10.1002/mabi.201200471 https://doi.org/10.1007/s12033-018-0084-5
Volume 9 Issue 2 (2023) 406 https://doi.org/10.18063/ijb.v9i2.674

