Page 414 - IJB-9-2
P. 414

International Journal of Bioprinting                   3D-printed skin substitute accelerates wound healing in vivo


               cells enhances wound healing in mouse.  Colloids Surf A   19.  Guan  G,  Qizhuang  L,  Liu  S,  et  al.,  2022,  3D-bioprinted
               Physicochem Eng Asp, 604: 125268.                  peptide coupling patches for wound healing. Mater Today
                                                                  Bio, 13: 100188.
               https://doi.org/10.1016/j.colsurfa.2020.125268
            11.  Chen M, Przyborowski M, Berthiaume F, 2009, Stem cells      https://doi.org/10.1016/j.mtbio.2021.100188
               for  skin tissue  engineering  and wound  healing.  Crit Rev   20.  Camci-Unal G, Cuttica D, Annabi N, et al., 2013, Synthesis
               Biomed Eng, 37: 399–421.                           and characterization of hybrid hyaluronic acid-gelatin
               https://doi.org/10.1615/critrevbiomedeng.v37.i4-5.50  hydrogels. Biomacromolecules, 14: 1085–1092.
            12.  Choi YC, Choi JS, Woo CH, et al., 2014, Stem cell delivery      https://doi.org/10.1021/bm3019856
               systems inspired by tissue-specific niches. J Control Release,   21.  Mazini L, Rochette L, Admou B, et al., 2020, Hopes and limits
               193: 42-50.                                        of adipose-derived stem cells (ADSCs) and mesenchymal
               https://doi.org/10.1016/j.jconrel.2014.06.032      stem cells (MSCs) in wound healing. Int J Mol Sci, 21: 1306.
            13.  Cho KH, Uthaman S, Park IK, et al., 2018, Injectable      https://doi.org/10.3390/ijms21041306.
               biomaterials in plastic and reconstructive surgery: A review   22.  Li CY, Wu XY, Tong JB, et al., 2015, Comparative analysis
               of the current status. Tissue Eng Regen Med, 15: 559–574.   of human mesenchymal stem cells from bone marrow and
               https://doi.org/10.1007/s13770-018-0158-2          adipose tissue under xeno-free conditions for cell therapy.
                                                                  Stem Cell Res Ther, 6: 55.
            14.  Zhao Y, Fan J, Bai S, 2019, Biocompatibility of injectable
               hydrogel from decellularized human adipose tissue  in      https://doi.org/10.1186/s13287-015-0066-5
               vitro and  in vivo.  J  Biomed Mater Res B Appl Biomater,   23.  Hassanshahi A, Hassanshahi M, Khabbazi S, et al., 2019,
               107: 1684–1694.                                    Adipose-derived stem cells for wound healing. J Cell Physiol,
               https://doi.org/10.1002/jbm.b.34261                234: 7903–7914.
            15.  Zhu J, Marchant RE, 2011, Design properties of hydrogel      https://doi.org/10.1002/jcp.27922
               tissue-engineering scaffolds.  Expert Rev Med Devices,   24.  Boggio P, Tiberio R, Gattoni M, et al., 2008, Is there an
               8: 607–626.                                        easier way to autograft skin in chronic leg ulcers? ‘Minced
               https://doi.org/10.1586/erd.11.27                  micrografts’, a new technique. J Eur Acad Dermatol Venereol,
                                                                  22: 1168–1172.
            16.  Murphy SV, Skardal A, Atala A, 2013, Evaluation of
               hydrogels for bio-printing applications. J Biomed Mater Res      https://doi.org/10.1111/j.1468-3083.2008.02737.x
               A, 101: 272–284.                                25.  Zhang ML, 1987, The use of microskin-grafting in extensive
               https://doi.org/10.1002/jbm.a.34326                burns.  Zhonghua  Zheng  Xing  Shao  Shang  Wai  Ke  Za  Zhi,
                                                                  3: 100–102, 156.
            17.  Xu P, Guan J, Chen Y, et al., 2021, Stiffness of
               photocrosslinkable gelatin hydrogel influences nucleus   26.  Mota C, Puppi D, Chiellini F, et al., 2015, Additive
               pulposus cell properties in vitro. J Cell Mol Med, 25: 880–891.   manufacturing techniques  for the  production of  tissue
                                                                  engineering constructs. J Tissue Eng Regen Med, 9: 174–190.
               https://doi.org/10.1111/jcmm.16141
                                                                  https://doi.org/10.1002/term.1635
            18.  Schuurman  W,  Levett  PA,  Pot  MW, et al.,  2013,  Gelatin-
               methacrylamide hydrogels as potential biomaterials for   27.  Siddiqui N, Asawa S, Birru B, et al., 2018, PCL-based
               fabrication of tissue-engineered cartilage constructs.   composite scaffold matrices for tissue engineering
               Macromol Biosci, 13: 551–561.                      applications. Mol Biotechnol, 60: 506–532.
               https://doi.org/10.1002/mabi.201200471             https://doi.org/10.1007/s12033-018-0084-5



















            Volume 9 Issue 2 (2023)                        406                      https://doi.org/10.18063/ijb.v9i2.674
   409   410   411   412   413   414   415   416   417   418   419