Page 83 - IJB-9-2
P. 83

International Journal of Bioprinting                             Clinical applications of bioprinted active bone


               https://doi.org/10.1016/j.bjoms.2016.02.003     14.  Shahabipour F, Ashammakhi N, Oskuee RK, et al., 2020,
                                                                  Key components of engineering vascularized 3-dimensional
            8.   Li SH, Liu YH, Tian TR, et al., 2021, Bioswitchable delivery
               of microRNA by framework nucleic acids: Application to   bioprinted bone constructs. Transl Res, 216: 57–76.
               bone regeneration. Small, 17: 2104359.             https://doi.org/10.1016/j.trsl.2019.08.010
               https://doi.org/10.1002/smll.202104359          15.  Santos MI, Reis RL, 2010, Vascularization in bone tissue
                                                                  engineering:  Physiology,  current  strategies,  major  hurdles
            9.   Masaeli R, Zandsalimi K, Rasoulianboroujeni M, et al.,
               2019, Challenges in three-dimensional printing of bone   and future challenges. Macromol Biosci, 10: 12–27.
               substitutes. Tissue Eng Part B Rev, 25: 387–397.      https://doi.org/10.1002/mabi.200900107
               https://doi.org/10.1089/ten.teb.2018.0381       16.  Kamath MS, Ahmed SS, Dhanasekaran M, et al., 2014,
                                                                  Polycaprolactone scaffold engineered for sustained release
            10.  Matai I, Kaur G, Seyedsalehi A,  et  al., 2020, Progress in
               3D bioprinting technology for tissue/organ regenerative   of resveratrol: Therapeutic enhancement in bone tissue
               engineering. Biomaterials, 226: 119536.            engineering. Int J Nanomed, 9: 183–195.
                                                                  https://doi.org/10.2147/ijn.s49460
               https://doi.org/10.1016/j.biomaterials.2019.119536
                                                               17.  Walsh WR, Vizesi F, Michael D, et al., 2008, Beta-TCP bone
            11.  Wuest S, Godla ME, Mueller R, et al., 2014, Tunable hydrogel
               composite  with  two-step  processing  in  combination   graft  substitutes  in  a bilateral  rabbit tibial  defect  model.
               with innovative hardware upgrade for cell-based three-  Biomaterials, 29: 266–271.
               dimensional bioprinting. Acta Biomater, 10: 630–640.      https://doi.org/10.1016/j.biomaterials.2007.09.035
               https://doi.org/10.1016/j.actbio.2013.10.016    18.  Wei L, Wu S, Kuss M, et al., 2019, 3D printing of silk fibroin-
                                                                  based hybrid scaffold treated with platelet rich plasma for
            12.  Zheng X, Huang J, Lin J, et al., 2019, 3D bioprinting in
               orthopedics translational research. J Biomater Sci Polym Ed,   bone tissue engineering. Bioactive Mater, 4: 256–260.
               30: 1172–1187.                                     https://doi.org/10.1016/j.bioactmat.2019.09.001
               https://doi.prg/10.1080/09205063.2019.1623989   19.  Marx RE, Carlson ER, Eichstaedt RM, et al., 1998, Platelet-
                                                                  rich plasma-Growth factor enhancement for bone grafts.
            13.  Byambaa B, Annabi N, Yue K,  et al., 2017, Bioprinted
               osteogenic  and  vasculogenic  patterns  for  engineering   Oral Surg Oral Med Oral Pathol Oral Radiol Endod,
               3D bone tissue.  Adv Healthc Mater, 6: 1700015. 10.1002/  85: 638–646.
               adhm.201700015                                     https://doi.org/10.1016/s1079-2104(98)90029-4






































            Volume 9 Issue 2 (2023)                         75                      https://doi.org/10.18063/ijb.v9i2.654
   78   79   80   81   82   83   84   85   86   87   88