Page 138 - IJB-9-3
P. 138

International Journal of Bioprinting      Programmable formaldehyde dehydrogenase for biodegradation formaldehyde



            9.   Zhu X, Wang D, Hui S, 2021, Research progress of adsorption   24.  Vianello F, Boscolo-Chio R, Signorini S, et al., 2007, On-line
               and photocatalysis of formaldehyde on TiO /AC.  Adsorpt   detection of atmospheric formaldehyde by a conductometric
                                                2
               Sci Technol, 2021(7):1–16.                         biosensor. Biosens Bioelectron, 22(6):920–925.
            10.  Wu X, Zuo S, Qiu M, et al., 2021, Atomically defined Co   25.  Marzuki N, Bakar A, Salleh A, et al., 2012, Electrochemical
               on two-dimensional TiO  nanosheet for photocatalytic   biosensor immobilization of formaldehyde dehydrogenase
                                   2
               hydrogen evolution. Chem Eng J, 420(2):1–22.       with nafion for determination of formaldehyde from Indian
                                                                  mackerel (rastrelliger kanagurta) fish.  Curr Anal Chem,
            11.  Soni V, Goel V, Singh P,  et al., 2021, Abatement of
               formaldehyde with photocatalytic and catalytic oxidation: A   8(4):534–542.
               review. Int J Chem React Eng, 19(1):1–29.       26.  Shahrubudin N, Lee TC, Ramlan R, 2019, An overview
                                                                  on 3D printing technology: Technological, materials, and
            12.  Robert B, Nallathambi G, 2021, Indoor formaldehyde
               removal by catalytic oxidation, adsorption and nanofibrous   applications. Proc Manuf, 35(2019):1286–1296.
               membranes: A review. Environ Chem Lett, 19(3):2551–2579.  27.  Tofail S, Koumoulos EP, Bandyopadhyay A,  et al., 2018,
                                                                  Additive manufacturing: Scientific and technological
            13.  Chen M, Wang H, Chen X, et al., 2020, High-performance
               of Cu-TiO  for photocatalytic oxidation of formaldehyde   challenges, market uptake and opportunities. Mater Today,
                       2
               under visible light and the mechanism study. Chem Eng J,   21:22–37.
               390:1–43.                                       28.  Xu T, Jin J, Gregory C, et al., 2005, Inkjet printing of viable
                                                                  mammalian cells. Biomaterials, 26(1):93–99.
            14.  Sun S, Wu X, Huang Z, et al., 2022, Engineering stable Pt
               nanoclusters on defective two-dimensional TiO  nanosheets   29.  Guillotin B, Souquet A, Catros S, et al., 2010, Laser assisted
                                                 2
               by introducing SMSI for efficient ambient formaldehyde   bioprinting of engineered tissue with high cell density and
               oxidation. Chem Eng J, 435(3):1–49.                microscale organization. Biomaterials, 31(28):7250–7256.
            15.  Tanaka N, Kusakabe Y, Ito K, et al., 2002, Crystal structure   30.  Demirci U, 2006, Acoustic picoliter droplets for emerging
               of formaldehyde dehydrogenase from Pseudomonas     applications in semiconductor industry and biotechnology.
               putida: The structural origin of the tightly bound cofactor   J Microelectromech S, 15(4):957–966.
               in nicotinoprotein dehydrogenases.  J Mol Biol, 324(3):   31.  Smith CM, Stone AL, Parkhill RL,  et  al., 2004, Three-
               519–533.
                                                                  dimensional bio-assembly tool for generating viable tissue-
            16.  Teierskyt V, Urbonaviius J, Ratautas D, 2021, A direct   engineered constructs. Tissue Eng, 10:1566.
               electron transfer formaldehyde dehydrogenase biosensor for   32.  Zhao Y, Li Y, Mao S,  et al., 2015, The influence of
               the determination of formaldehyde in river water. Talanta,   printing parameters on cell survival rate and printability
               234:122657.
                                                                  in microextrusion-based 3D cell printing technology.
            17.  Liese A, Hilterhaus L, 2013, Evaluation of immobilized   Biofabrication, 7(4):45002.
               enzymes for industrial applications. Chem Soc Rev,   33.  Schafer T, Borchert TW, Nielsen VS, et al., 2007, Industrial
               42(15):6236–6249.
                                                                  enzymes. Adv Biochem Eng Biot, 105:59–131.
            18.  Mokhtar NF, Rahman R, Noor N,  et al., 2020, The   34.  Lu LA, Rui PA, Yl A, et al., 2022, 3D printing of recombinant
               immobilization of lipases on porous support by adsorption   Escherichia coli /Au nanocomposites as agitating paddles
               and hydrophobic interaction method, Catalysts, 10(7):1–17.
                                                                  towards  robust  catalytic  reduction  of  4-nitrophenol.  J
            19.  Paolo Z, Roberto FL, Enrico S, 2016, Agarose and its   Hazard Mater, 423:1–11.
               derivatives as supports for enzyme immobilization.   35.  Shao Y, Liao Z, Gao B, et al., 2022, Emerging 3D printing
               Molecules, 21(11):1–25.
                                                                  strategies for enzyme immobilization: Materials, methods,
            20.  Datta D, Tiwari O, Gupta MK, 2019, Self-assembly of   and applications. ACS Omega, 7(14):11530–11543.
               diphenylalanine-peptide uncleic acid  conjugates.  ACS   36.  Ito K, Takahashi M, Yoshimoto T,  et al., 1994, Cloning
               Omega, 4(6):10715–10728.
                                                                  and high-level expression of the glutathione-independent
            21.  Liang JF, Li YT, Yang VC, 2000, Biomedical application of   formaldehyde  dehydrogenase  gene  from  Pseudomonas
               immobilized enzymes. J Pharm Sci-US, 89(8):979–990.  putida. J Bacteriol, 176(9):2483–2491.
            22.  Masuda Y, Kugimiya SI, Murai K, et al., 2013, Enhancement   37.  Suryawanshi RK, Jana UK, Prajapati BP,  et al., 2019,
               of activity and stability of the formaldehyde dehydrogenase   Immobilization of  Aspergillus quadrilineatus RSNK-
               by immobilizing  onto  phenyl-functionalized  mesoporous   1 multi-enzymatic system for fruit juice treatment and
               silica. Colloid Surface B, 101:26–33.              mannooligosaccharide generation. Food Chem, 289:95–102.
            23.  Yoshimoto M, Yamashita T, Kinoshita S, 2011, Thermal   38.  Sdd A, Jin HB, Dkp A,  et al., 2021, 3D-printed bioactive
               stabilization  of  formaldehyde  dehydrogenase  by  and biodegradable hydrogel scaffolds of alginate/gelatin/
               encapsulation in liposomes with nicotinamide adenine   cellulose nanocrystals for tissue engineering.  Int J Biol
               dinucleotide. Enzyme Microb Tech, 49(2):209–214.   Macromol, 167:644–658.


            Volume 9 Issue 3 (2023)                        130                          https://doi.org/10.18063/ijb.695
   133   134   135   136   137   138   139   140   141   142   143