Page 138 - IJB-9-3
P. 138
International Journal of Bioprinting Programmable formaldehyde dehydrogenase for biodegradation formaldehyde
9. Zhu X, Wang D, Hui S, 2021, Research progress of adsorption 24. Vianello F, Boscolo-Chio R, Signorini S, et al., 2007, On-line
and photocatalysis of formaldehyde on TiO /AC. Adsorpt detection of atmospheric formaldehyde by a conductometric
2
Sci Technol, 2021(7):1–16. biosensor. Biosens Bioelectron, 22(6):920–925.
10. Wu X, Zuo S, Qiu M, et al., 2021, Atomically defined Co 25. Marzuki N, Bakar A, Salleh A, et al., 2012, Electrochemical
on two-dimensional TiO nanosheet for photocatalytic biosensor immobilization of formaldehyde dehydrogenase
2
hydrogen evolution. Chem Eng J, 420(2):1–22. with nafion for determination of formaldehyde from Indian
mackerel (rastrelliger kanagurta) fish. Curr Anal Chem,
11. Soni V, Goel V, Singh P, et al., 2021, Abatement of
formaldehyde with photocatalytic and catalytic oxidation: A 8(4):534–542.
review. Int J Chem React Eng, 19(1):1–29. 26. Shahrubudin N, Lee TC, Ramlan R, 2019, An overview
on 3D printing technology: Technological, materials, and
12. Robert B, Nallathambi G, 2021, Indoor formaldehyde
removal by catalytic oxidation, adsorption and nanofibrous applications. Proc Manuf, 35(2019):1286–1296.
membranes: A review. Environ Chem Lett, 19(3):2551–2579. 27. Tofail S, Koumoulos EP, Bandyopadhyay A, et al., 2018,
Additive manufacturing: Scientific and technological
13. Chen M, Wang H, Chen X, et al., 2020, High-performance
of Cu-TiO for photocatalytic oxidation of formaldehyde challenges, market uptake and opportunities. Mater Today,
2
under visible light and the mechanism study. Chem Eng J, 21:22–37.
390:1–43. 28. Xu T, Jin J, Gregory C, et al., 2005, Inkjet printing of viable
mammalian cells. Biomaterials, 26(1):93–99.
14. Sun S, Wu X, Huang Z, et al., 2022, Engineering stable Pt
nanoclusters on defective two-dimensional TiO nanosheets 29. Guillotin B, Souquet A, Catros S, et al., 2010, Laser assisted
2
by introducing SMSI for efficient ambient formaldehyde bioprinting of engineered tissue with high cell density and
oxidation. Chem Eng J, 435(3):1–49. microscale organization. Biomaterials, 31(28):7250–7256.
15. Tanaka N, Kusakabe Y, Ito K, et al., 2002, Crystal structure 30. Demirci U, 2006, Acoustic picoliter droplets for emerging
of formaldehyde dehydrogenase from Pseudomonas applications in semiconductor industry and biotechnology.
putida: The structural origin of the tightly bound cofactor J Microelectromech S, 15(4):957–966.
in nicotinoprotein dehydrogenases. J Mol Biol, 324(3): 31. Smith CM, Stone AL, Parkhill RL, et al., 2004, Three-
519–533.
dimensional bio-assembly tool for generating viable tissue-
16. Teierskyt V, Urbonaviius J, Ratautas D, 2021, A direct engineered constructs. Tissue Eng, 10:1566.
electron transfer formaldehyde dehydrogenase biosensor for 32. Zhao Y, Li Y, Mao S, et al., 2015, The influence of
the determination of formaldehyde in river water. Talanta, printing parameters on cell survival rate and printability
234:122657.
in microextrusion-based 3D cell printing technology.
17. Liese A, Hilterhaus L, 2013, Evaluation of immobilized Biofabrication, 7(4):45002.
enzymes for industrial applications. Chem Soc Rev, 33. Schafer T, Borchert TW, Nielsen VS, et al., 2007, Industrial
42(15):6236–6249.
enzymes. Adv Biochem Eng Biot, 105:59–131.
18. Mokhtar NF, Rahman R, Noor N, et al., 2020, The 34. Lu LA, Rui PA, Yl A, et al., 2022, 3D printing of recombinant
immobilization of lipases on porous support by adsorption Escherichia coli /Au nanocomposites as agitating paddles
and hydrophobic interaction method, Catalysts, 10(7):1–17.
towards robust catalytic reduction of 4-nitrophenol. J
19. Paolo Z, Roberto FL, Enrico S, 2016, Agarose and its Hazard Mater, 423:1–11.
derivatives as supports for enzyme immobilization. 35. Shao Y, Liao Z, Gao B, et al., 2022, Emerging 3D printing
Molecules, 21(11):1–25.
strategies for enzyme immobilization: Materials, methods,
20. Datta D, Tiwari O, Gupta MK, 2019, Self-assembly of and applications. ACS Omega, 7(14):11530–11543.
diphenylalanine-peptide uncleic acid conjugates. ACS 36. Ito K, Takahashi M, Yoshimoto T, et al., 1994, Cloning
Omega, 4(6):10715–10728.
and high-level expression of the glutathione-independent
21. Liang JF, Li YT, Yang VC, 2000, Biomedical application of formaldehyde dehydrogenase gene from Pseudomonas
immobilized enzymes. J Pharm Sci-US, 89(8):979–990. putida. J Bacteriol, 176(9):2483–2491.
22. Masuda Y, Kugimiya SI, Murai K, et al., 2013, Enhancement 37. Suryawanshi RK, Jana UK, Prajapati BP, et al., 2019,
of activity and stability of the formaldehyde dehydrogenase Immobilization of Aspergillus quadrilineatus RSNK-
by immobilizing onto phenyl-functionalized mesoporous 1 multi-enzymatic system for fruit juice treatment and
silica. Colloid Surface B, 101:26–33. mannooligosaccharide generation. Food Chem, 289:95–102.
23. Yoshimoto M, Yamashita T, Kinoshita S, 2011, Thermal 38. Sdd A, Jin HB, Dkp A, et al., 2021, 3D-printed bioactive
stabilization of formaldehyde dehydrogenase by and biodegradable hydrogel scaffolds of alginate/gelatin/
encapsulation in liposomes with nicotinamide adenine cellulose nanocrystals for tissue engineering. Int J Biol
dinucleotide. Enzyme Microb Tech, 49(2):209–214. Macromol, 167:644–658.
Volume 9 Issue 3 (2023) 130 https://doi.org/10.18063/ijb.695

