Page 165 - IJB-9-3
P. 165

International Journal of Bioprinting                                LPBF of AKM/PEEK biological composite



            Ethics approval and consent to participate         12.  Yang L, Yan C, Han C,  et al., 2018, Mechanical response
                                                                  of a triply periodic minimal surface cellular structures
            Not applicable.                                       manufactured by selective laser melting.  Int J Mech Sci,
                                                                  148:149–157.
            Consent for publication                            13.  Zhang C, Zheng H, Yang L, et al., 2022, Mechanical responses
            Not applicable.                                       of sheet-based gyroid-type triply periodic minimal surface
                                                                  lattice structures fabricated using selective laser melting.
            Availability of data                                  Mater Des, 214:110407.
            Data can be obtained from the corresponding author upon   14.  Haleem A, Javaid M, 2019, Polyether ether ketone (PEEK)
                                                                  and its 3D printed implants applications in medical field: An
            reasonable request.
                                                                  overview. Clin Epidemiol Global Health, 7(4):571–577.
            References                                         15.  Oladapo BI, Zahedi SA, Ismail SO, et al., 2021, 3D printing
                                                                  of PEEK and its composite to increase biointerfaces as a
            1.   Chen P, Wang H, Su J, et al., 2022, Recent advances on high-  biomedical material: A review. Colloids Surf B Biointerfaces,
               performance polyaryletherketone materials for additive   203:111726.
               manufacturing. Adv Mater, 34, 2200750:1–26.     16.  Chen B, Berretta S, Evans K, et al., 2018, A primary study into
            2.   Chen J, Liu X, Tian Y, et al., 2022, 3D-printed anisotropic   graphene/polyether  ether  ketone  (PEEK)  nanocomposite
               polymer  materials  for  functional  applications.  Adv Mater,   for laser sintering. Appl Surf Sci, 428:1018–1028.
               34(5):2102877.                                  17.  Zhang S, Feng Z, Hu Y,  et al., 2022, Endowing
            3.   Wu H, Wang O, Tian Y, et al., 2021, Selective laser sintering-  polyetheretherketone implants with osseointegration
               based 4D printing of magnetism-responsive grippers. ACS   Properties: In situ construction of patterned nanorod arrays.
               Appl Mater Interfaces, 13(11):12679–12688.         Small, 18(5):2105589.
            4.   Wu H, Zhang X, Ma Z, et al., 2020, A material combination   18.  Yuan X, Ouyang L, Luo Y,  et  al., 2019, Multifunctional
               concept to realize 4D printed products with newly emerging   sulfonated polyetheretherketone coating with beta-
               property/functionality. Adv Sci, 7(9):1903208.     defensin-14 for yielding durable and broad-spectrum
                                                                  antibacterial activity and osseointegration.  Acta Biomater,
            5.   Feng P, Wu P, Gao C, et al., 2018, A multimaterial scaffold   86:323–337.
               with tunable properties: Toward bone tissue repair, Adv Sci,
               5(6):1700817.                                   19.  Tan LJ, Zhu W, Zhou K, 2020, Recent progress on polymer
                                                                  materials for additive manufacturing.  Adv Funct Mater,
            6.   Berretta S, Evans K, Ghita O, 2018, Additive manufacture   30(43):2003062.
               of PEEK cranial implants: Manufacturing considerations
               versus accuracy and mechanical performance.  Mater  Des,   20.  Najeeb S, Zafar MS, Khurshid Z, et al., 2016, Applications
               139:141–152.                                       of polyetheretherketone (PEEK) in oral implantology and
                                                                  prosthodontics. J Prosthodont Res, 60(1):12–19.
            7.   Wu H, Wang Q, Wu Z, et al., 2022, Multi-material additively
               manufactured magnetoelectric  architectures  with  a   21.  Brizuela A, Herrero-Climent M, Rios-Carrasco E, et al., 2019,
               structure-dependent mechanical-to-electrical conversion   Influence of the elastic modulus on the osseointegration of
               capability. Small Methods, 6(12):e2201127.         dental implants. Materials, 12(6):980.
            8.   Chen P, Su J, Wang H, et al., 2022, Mechanical properties and   22.  Basgul C, Yu T, MacDonald DW, et al., 2020, Does annealing
               microstructure characteristics of lattice-surfaced PEEK cage   improve the interlayer adhesion and structural integrity of
               fabricated by high-temperature laser powder bed fusion. J   FFF 3D printed PEEK lumbar spinal cages? J Mech Behav
               Mater Sci Technol, 125:105–117.                    Biomed Mater, 102:103455.
            9.   Chen B, Yazdani B, Benedetti L, et al., 2019, Fabrication of   23.  Velasco-Hogan A, Xu  J, Meyers MA,  2018, Additive
               nanocomposite powders with a core-shell structure. Compos   manufacturing as a method to design and optimize
               Sci Technol, 170:116–127.                          bioinspired structures. Adv Mater, 30(52):1800940.
            10.  Shirazi SF, Gharehkhani S, Mehrali M,  et al., 2015, A   24.  Chen B, Wang Y,  Berretta S,  et al., 2017, Poly aryl  ether
               review on powder-based additive manufacturing for tissue   ketones (PAEKs) and carbon-reinforced PAEK powders for
               engineering: Selective laser sintering and inkjet 3D printing.   laser sintering. J Mater Sci, 52(10):6004–6019.
               Sci Technol Adv Mater, 16(3):033502.            25.  Berretta S, Evans KE, Ghita O, 2015, Processability of PEEK,
            11.  Wang H, Chen P, Wu H, et al., 2022, Comparative evaluation   a new polymer for high temperature laser sintering (HT-LS).
               of printability and compression properties of poly-ether-  Eur Polym J, 68(Suppl C):243–266.
               ether-ketone triply periodic minimal surface scaffolds   26.  Berretta S, Evans KE, Ghita OR, 2016, Predicting processing
               fabricated by laser powder bed fusion.  Addit Manuf,   parameters in high temperature laser sintering (HT-LS)
               57:102961.                                         from powder properties. Mater Des, 105:301–314.


            Volume 9 Issue 3 (2023)                        157                          https://doi.org/10.18063/ijb.699
   160   161   162   163   164   165   166   167   168   169   170