Page 206 - IJB-9-3
P. 206

International Journal of Bioprinting                             3D-printed vascularized biofunctional scaffold



            12.  Iyer SR, Scheiber AL, Yarowsky P, et al., 2020, Exosomes   22.  Niu X, Ferracci G, Lin M, et al., 2021, Highly substituted
               isolated from platelet-rich plasma and mesenchymal stem   decoupled gelatin methacrylamide free of hydrolabile
               cells promote recovery of function after muscle injury. Am J   methacrylate impurities: An optimum choice for long-
               Sports Med, 48(9):2277–2286.                       term stability and cytocompatibility.  Int J Biol Macromol,
                                                                  167:479–490.
               https://doi.org/10.1177/0363546520926462
            13.  Uludag H, D’Augusta D, Palmer R,  et  al., 1999,   https://doi.org/10.1016/j.ijbiomac.2020.11.187
               Characterization of rhBMP-2 pharmacokinetics implanted   23.  Krishna KV, Ménard-Moyon C, Verma S, et al., 2013,
               with biomaterial carriers in the rat ectopic model. J Biomed   Graphene-based nanomaterials for nanobiotechnology and
               Mater Res, 46(2):193–202.                          biomedical applications. Nanomedicine (Lond), 8(10):1669–
               https://doi.org/10.1002/(sici)1097-4636(199908)46:   1688.
               2<193::aid-jbm8>3.0.co;2-1                         https://doi.org/10.2217/nnm.13.140
            14.  Bouletreau PJ, Warren SM, Spector JA, et al., 2002,   24.  Waters R, Pacelli S, Maloney R, et al., 2016, Stem cell
               Hypoxia and VEGF up-regulate BMP-2 mRNA and protein   secretome-rich nanoclay hydrogel: A dual action therapy for
               expression in microvascular endothelial cells: Implications   cardiovascular regeneration. Nanoscale, 8(14):7371–7376.
               for fracture healing. Plast Reconstr Surg, 109(7):2384–2397.
                                                                  https://doi.org/10.1039/c5nr07806g
               https://doi.org/10.1097/00006534-200206000-00033
                                                               25.  Ding X, Gao J, Wang Z, et al., 2016, A shear-thinning
            15.  Pufe T, Wildemann B, Petersen W, et al., 2002, Quantitative   hydrogel that extends in  vivo bioactivity of FGF2.
               measurement of the splice variants 120 and 164 of the   Biomaterials, 111:80–89.
               angiogenic peptide vascular endothelial growth factor in the
               time flow of fracture healing: A study in the rat. Cell Tissue   https://doi.org/10.1016/j.biomaterials.2016.09.026
               Res, 309(3):387–392.                            26.  Zhang Y, Xu  J, Ruan YC, et al.,  2016, Implant-derived
               https://doi.org/10.1007/s00441-002-0605-0          magnesium  induces local  neuronal  production of  CGRP
                                                                  to improve bone-fracture healing in rats.  Nat Med,
            16.  Uchida S, Sakai A, Kudo H, et al., 2003, Vascular endothelial   22(10):1160–1169.
               growth factor is expressed along with its receptors during
               the healing process of bone and bone marrow after drill-hole   https://doi.org/10.1038/nm.4162
               injury in rats. Bone, 32(5):491–501.            27.  Lee CS, Hwang HS, Kim S, et al., 2020, Inspired by nature:
               https://doi.org/10.1016/s8756-3282(03)00053-x      Facile design of nanoclay-organic hydrogel bone sealant with
                                                                  multifunctional properties for robust bone regeneration.
            17.  Schär MO, Diaz-Romero J, Kohl S,  et al., 2015, Platelet-  Adv Funct Mater, 30(43):2003717.
               rich concentrates differentially release growth factors and
               induce cell migration in vitro. Clin Orthop Relat Res, 473(5):   https://doi.org/10.1002/adfm.202003717
               1635–1643.
                                                               28.  Cao BJ, Wang XW, Zhu L, et al., 2019, MicroRNA-146a
               https://doi.org/10.1007/s11999-015-4192-2          sponge therapy suppresses neointimal formation in rat vein
                                                                  grafts. IUBMB Life, 71(1):125–133.
            18.  Dohan Ehrenfest DM, Rasmusson L, Albrektsson T, 2009,
               Classification of platelet concentrates: From pure platelet-  https://doi.org/10.1002/iub.1946
               rich plasma (P-PRP) to leucocyte- and platelet-rich fibrin
               (L-PRF). Trends Biotechnol, 27(3):158–167.      29.  Cao BJ, Wang XW, Zhu L, et al., 2019, Dedicator of
                                                                  cytokinesis 2 silencing therapy inhibits neointima formation
               https://doi.org/10.1016/j.tibtech.2008.11.009      and improves blood flow in rat vein grafts. J Mol Cell Cardiol,
            19.  Chuah YJ, Peck Y, Lau JE,  et  al., 2017, Hydrogel based   128:134–144.
               cartilaginous tissue regeneration: Recent insights and   https://doi.org/10.1016/j.yjmcc.2019.01.030
               technologies. Biomater Sci, 5(4):613–631.
                                                               30.  Liu X, Yang Y, Niu X, et al., 2017, An in situ photocrosslinkable
               https://doi.org/10.1039/c6bm00863a                 platelet rich plasma—Complexed hydrogel glue with growth
            20.  Yue K, Trujillo-de Santiago G, Alvarez MM, et al., 2015,   factor controlled release ability to promote cartilage defect
               Synthesis, properties, and biomedical applications of gelatin   repair. Acta Biomater, 62:179–187.
               methacryloyl (GelMA) hydrogels. Biomaterials, 73:254–271.  https://doi.org/10.1016/j.actbio.2017.05.023
               https://doi.org/10.1016/j.biomaterials.2015.08.045  31.  Daskalakis E, Liu FY, Huang BY, et al., 2021, Investigating
            21.  Chu C, Deng J, Sun X, et al., 2017, Collagen membrane and   the influence of architecture and material composition of 3D
               immune response in guided bone regeneration: Recent progress   printed anatomical design scaffolds for large bone defects.
               and perspectives. Tissue Eng Part B Rev, 23(5):421–435.  Int J Bioprint, 7(2):43–52.
               https://doi.org/10.1089/ten.TEB.2016.0463          https://doi.org/10.18063/ijb.v7i2.268


            Volume 9 Issue 3 (2023)                        198                         https://doi.org/10.18063/ijb.702
   201   202   203   204   205   206   207   208   209   210   211