Page 206 - IJB-9-3
P. 206
International Journal of Bioprinting 3D-printed vascularized biofunctional scaffold
12. Iyer SR, Scheiber AL, Yarowsky P, et al., 2020, Exosomes 22. Niu X, Ferracci G, Lin M, et al., 2021, Highly substituted
isolated from platelet-rich plasma and mesenchymal stem decoupled gelatin methacrylamide free of hydrolabile
cells promote recovery of function after muscle injury. Am J methacrylate impurities: An optimum choice for long-
Sports Med, 48(9):2277–2286. term stability and cytocompatibility. Int J Biol Macromol,
167:479–490.
https://doi.org/10.1177/0363546520926462
13. Uludag H, D’Augusta D, Palmer R, et al., 1999, https://doi.org/10.1016/j.ijbiomac.2020.11.187
Characterization of rhBMP-2 pharmacokinetics implanted 23. Krishna KV, Ménard-Moyon C, Verma S, et al., 2013,
with biomaterial carriers in the rat ectopic model. J Biomed Graphene-based nanomaterials for nanobiotechnology and
Mater Res, 46(2):193–202. biomedical applications. Nanomedicine (Lond), 8(10):1669–
https://doi.org/10.1002/(sici)1097-4636(199908)46: 1688.
2<193::aid-jbm8>3.0.co;2-1 https://doi.org/10.2217/nnm.13.140
14. Bouletreau PJ, Warren SM, Spector JA, et al., 2002, 24. Waters R, Pacelli S, Maloney R, et al., 2016, Stem cell
Hypoxia and VEGF up-regulate BMP-2 mRNA and protein secretome-rich nanoclay hydrogel: A dual action therapy for
expression in microvascular endothelial cells: Implications cardiovascular regeneration. Nanoscale, 8(14):7371–7376.
for fracture healing. Plast Reconstr Surg, 109(7):2384–2397.
https://doi.org/10.1039/c5nr07806g
https://doi.org/10.1097/00006534-200206000-00033
25. Ding X, Gao J, Wang Z, et al., 2016, A shear-thinning
15. Pufe T, Wildemann B, Petersen W, et al., 2002, Quantitative hydrogel that extends in vivo bioactivity of FGF2.
measurement of the splice variants 120 and 164 of the Biomaterials, 111:80–89.
angiogenic peptide vascular endothelial growth factor in the
time flow of fracture healing: A study in the rat. Cell Tissue https://doi.org/10.1016/j.biomaterials.2016.09.026
Res, 309(3):387–392. 26. Zhang Y, Xu J, Ruan YC, et al., 2016, Implant-derived
https://doi.org/10.1007/s00441-002-0605-0 magnesium induces local neuronal production of CGRP
to improve bone-fracture healing in rats. Nat Med,
16. Uchida S, Sakai A, Kudo H, et al., 2003, Vascular endothelial 22(10):1160–1169.
growth factor is expressed along with its receptors during
the healing process of bone and bone marrow after drill-hole https://doi.org/10.1038/nm.4162
injury in rats. Bone, 32(5):491–501. 27. Lee CS, Hwang HS, Kim S, et al., 2020, Inspired by nature:
https://doi.org/10.1016/s8756-3282(03)00053-x Facile design of nanoclay-organic hydrogel bone sealant with
multifunctional properties for robust bone regeneration.
17. Schär MO, Diaz-Romero J, Kohl S, et al., 2015, Platelet- Adv Funct Mater, 30(43):2003717.
rich concentrates differentially release growth factors and
induce cell migration in vitro. Clin Orthop Relat Res, 473(5): https://doi.org/10.1002/adfm.202003717
1635–1643.
28. Cao BJ, Wang XW, Zhu L, et al., 2019, MicroRNA-146a
https://doi.org/10.1007/s11999-015-4192-2 sponge therapy suppresses neointimal formation in rat vein
grafts. IUBMB Life, 71(1):125–133.
18. Dohan Ehrenfest DM, Rasmusson L, Albrektsson T, 2009,
Classification of platelet concentrates: From pure platelet- https://doi.org/10.1002/iub.1946
rich plasma (P-PRP) to leucocyte- and platelet-rich fibrin
(L-PRF). Trends Biotechnol, 27(3):158–167. 29. Cao BJ, Wang XW, Zhu L, et al., 2019, Dedicator of
cytokinesis 2 silencing therapy inhibits neointima formation
https://doi.org/10.1016/j.tibtech.2008.11.009 and improves blood flow in rat vein grafts. J Mol Cell Cardiol,
19. Chuah YJ, Peck Y, Lau JE, et al., 2017, Hydrogel based 128:134–144.
cartilaginous tissue regeneration: Recent insights and https://doi.org/10.1016/j.yjmcc.2019.01.030
technologies. Biomater Sci, 5(4):613–631.
30. Liu X, Yang Y, Niu X, et al., 2017, An in situ photocrosslinkable
https://doi.org/10.1039/c6bm00863a platelet rich plasma—Complexed hydrogel glue with growth
20. Yue K, Trujillo-de Santiago G, Alvarez MM, et al., 2015, factor controlled release ability to promote cartilage defect
Synthesis, properties, and biomedical applications of gelatin repair. Acta Biomater, 62:179–187.
methacryloyl (GelMA) hydrogels. Biomaterials, 73:254–271. https://doi.org/10.1016/j.actbio.2017.05.023
https://doi.org/10.1016/j.biomaterials.2015.08.045 31. Daskalakis E, Liu FY, Huang BY, et al., 2021, Investigating
21. Chu C, Deng J, Sun X, et al., 2017, Collagen membrane and the influence of architecture and material composition of 3D
immune response in guided bone regeneration: Recent progress printed anatomical design scaffolds for large bone defects.
and perspectives. Tissue Eng Part B Rev, 23(5):421–435. Int J Bioprint, 7(2):43–52.
https://doi.org/10.1089/ten.TEB.2016.0463 https://doi.org/10.18063/ijb.v7i2.268
Volume 9 Issue 3 (2023) 198 https://doi.org/10.18063/ijb.702

