Page 207 - IJB-9-3
P. 207

International Journal of Bioprinting                             3D-printed vascularized biofunctional scaffold



            32.  Shao H, Liu A, Ke X, et al., 2017, 3D robocasting magnesium-  macrophage polarization in a rabbit model. Acta Biomater,
               doped wollastonite/TCP bioceramic scaffolds with improved   128:150–162.
               bone regeneration capacity in critical sized calvarial defects.   https://doi.org/10.1016/j.actbio.2021.04.010
               J Mater Chem B, 5(16):2941–2951.
                                                               39.  Zhao M, Wang J, Zhang JX, et al., 2022, Functionalizing
               https://doi.org/10.1039/c7tb00217c                 multi-component bioink with platelet-rich plasma for
            33.  Matai I, Kaur G, Seyedsalehi A, et al., 2020, Progress in   customized  in-situ  bilayer  bioprinting  for  wound  healing.
               3D bioprinting technology for tissue/organ regenerative   Mater Today Bio, 16:100334.
               engineering. Biomaterials, 226:119536.             https://doi.org/10.1016/j.mtbio.2022.100334
               https://doi.org/10.1016/j.biomaterials.2019.119536  40.  Gaharwar AK, Mihaila SM, Swami A, et al., 2013, Bioactive
                                                                  silicate nanoplatelets for osteogenic differentiation of human
            34.  Epstein NE, 2013, Complications due to the use of BMP/  mesenchymal stem cells. Adv Mater, 25(24):3329–3336.
               INFUSE in spine surgery: The evidence continues to mount.
               Surg Neurol Int, 4(Suppl 5):S343–S352.             https://doi.org/10.1002/adma.201300584
               https://doi.org/10.4103/2152-7806.114813        41.  Stegen S, van Gastel N, Carmeliet G, 2015, Bringing new life
                                                                  to damaged bone: The importance of angiogenesis in bone
            35.  Shields LB, Raque GH, Glassman SD, et al., 2006, Adverse   repair and regeneration. Bone, 70:19–27.
               effects associated with high-dose recombinant human bone
               morphogenetic protein-2 use in anterior cervical spine   https://doi.org/10.1016/j.bone.2014.09.017
               fusion. Spine (Phila Pa 1976), 31(5):542–547.   42.  Klopfleisch R, Jung F, 2017,  The  pathology of the  foreign
                                                                  body reaction against biomaterials. J Biomed Mater Res A,
               https://doi.org/10.1097/01.brs.0000201424.27509.72
                                                                  105(3):927–940.
            36.  Lee K, Silva EA, Mooney DJ, 2011, Growth factor delivery-  https://doi.org/10.1002/jbm.a.35958
               based tissue engineering: General approaches and a review
               of recent developments. J R Soc Interface, 8(55):153–170.  43.  Brown BN, Badylak SF, 2013, Expanded applications,
                                                                  shifting paradigms and an improved understanding of host-
               https://doi.org/10.1098/rsif.2010.0223             biomaterial interactions. Acta Biomater, 9(2):4948–4955.
            37.  Liu KT, Zhao M, Li Y, et al., 2022, VEGF loaded porcine   https://doi.org/10.1016/j.actbio.2012.10.025
               decellularized  adipose  tissue  derived  hydrogel  could   44.  Papait A, Cancedda R, Mastrogiacomo M, et al., 2018,
               enhance angiogenesis in vitro and in vivo.  J Biomater Sci   Allogeneic  platelet-rich  plasma  affects  monocyte
               Poly Ed, 33(5):569–589.
                                                                  differentiation to dendritic cells causing an anti-
               https://doi.org/10.1080/09205063.2021.2002235      inflammatory microenvironment, putatively fostering
                                                                  wound healing. J Tissue Eng Regen Med, 12(1):30–43.
            38.  Jiang GY, Li SH, Yu K, et al., 2021, A 3D-printed PRP-GelMA
               hydrogel promotes osteochondral regeneration through M2   https://doi.org/10.1002/term.2361































            Volume 9 Issue 3 (2023)                        199                         https://doi.org/10.18063/ijb.702
   202   203   204   205   206   207   208   209   210   211   212